forked from wanghaisheng/deeplearningbook-chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
notation.tex
165 lines (152 loc) · 6.87 KB
/
notation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
% !Mode:: "TeX:UTF-8"
%TODO
\chapter*{数学符号}
\label{notation}
\addcontentsline{toc}{chapter}{数学符号}
本节简要介绍本书所使用的数学符号。
我们在\chapref{chap:linear_algebra}至\chapref{chap:numerical_computation}中描述大多数数学概念,如果你不熟悉任何相应的数学概念,可以参考对应的章节。
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 数和数组}
\bgroup
% The \arraystretch definition here increases the space between rows in the table,
% so that \displaystyle math has more vertical space.
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle a$ & 标量 (整数或实数) \\
$\displaystyle \Va$ & 向量 \\
$\displaystyle \MA$ & 矩阵 \\
$\displaystyle \TSA$ & 张量 \\
$\displaystyle \MI_n$ & $n$行$n$列的\gls{identity_matrix} \\
$\displaystyle \MI$ & 维度蕴含于上下文的\gls{identity_matrix} \\
$\displaystyle \Ve^{(i)}$ & 标准基向量$[0,\dots,0,1,0,\dots,0]$,其中索引$i$处值为1 \\
$\displaystyle \text{diag}(\Va)$ & 对角方阵,其中对角元素由$\Va$给定 \\
$\displaystyle \RSa$ & 标量随机变量 \\
$\displaystyle \RVa$ & 向量随机变量 \\
$\displaystyle \RMA$ & 矩阵随机变量 \\
\end{tabular}
\egroup
\end{minipage}
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 集合和图}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle \SetA$ & 集合 \\
$\displaystyle \SetR$ & 实数集 \\
$\displaystyle \{0, 1\}$ & 包含0和1的集合 \\
$\displaystyle \{0, 1, \dots, n \}$ & 包含$0$和$n$之间所有整数的集合 \\
$\displaystyle [a, b]$ & 包含$a$和$b$的实数区间 \\
$\displaystyle (a, b]$ & 不包含$a$但包含$b$的实数区间 \\
$\displaystyle \SetA \backslash \SetB$ & 差集,即其元素包含于$\SetA$但不包含于$\SetB$\\
$\displaystyle \CalG$ & 图 \\
$\displaystyle Pa_\CalG(\RSx_i)$ & 图$\CalG$中$\RSx_i$的父节点
\end{tabular}
\egroup
\end{minipage}
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 索引}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle a_i$ & 向量$\Va$的第$i$个元素,其中索引从1开始 \\
$\displaystyle a_{-i}$ & 除了第$i$个元素,$\Va$的所有元素 \\
$\displaystyle A_{i,j}$ & 矩阵$\MA$的$i,j$元素 \\
$\displaystyle \MA_{i, :}$ & 矩阵$\MA$的第$i$行 \\
$\displaystyle \MA_{:, i}$ & 矩阵$\MA$的第$i$列 \\
$\displaystyle \TEA_{i, j, k}$ & 3维张量$\TSA$的$(i, j, k)$元素 \\
$\displaystyle \TSA_{:, :, i}$ & 3维张量的2维切片 \\
$\displaystyle \RSa_i$ & 随机向量$\RVa$的第$i$个元素 \\
\end{tabular}
\egroup
\end{minipage}
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 线性代数中的操作}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle \MA^\top$ & 矩阵$\MA$的转置 \\
$\displaystyle \MA^+$ & $\MA$的\gls{Moore} \\
$\displaystyle \MA \odot \MB $ & $\MA$和$\MB$的逐元素乘积(\gls{hadamard_product}) \\
$\displaystyle \mathrm{det}(\MA)$ & $\MA$的行列式 \\
\end{tabular}
\egroup
\end{minipage}
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 微积分}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle\frac{d y} {d x}$ & $y$关于$x$的导数 \\
$\displaystyle \frac{\partial y} {\partial x} $ & $y$关于$x$的偏导 \\
$\displaystyle \nabla_{\Vx} y $ & $y$关于$\Vx$的梯度 \\
$\displaystyle \nabla_{\MX} y $ & $y$关于$\MX$的矩阵导数 \\
$\displaystyle \nabla_{\TSX} y $ & $y$关于$\TSX$求导后的张量 \\
$\displaystyle \frac{\partial f}{\partial \Vx} $ &$f: \SetR^n \rightarrow \SetR^m$的\gls{jacobian}矩阵$\MJ \in \SetR^{m\times n}$ \\
$\displaystyle \nabla_{\Vx}^2 f(\Vx)\text{ or }\MH( f)(\Vx)$ & $f$在点$\Vx$处的\gls{hessian}矩阵 \\
$\displaystyle \int f(\Vx) d\Vx $ & $\Vx$整个域上的定积分 \\
$\displaystyle \int_\SetS f(\Vx) d\Vx$ & 集合$\SetS$上关于$\Vx$的定积分 \\
\end{tabular}
\egroup
\end{minipage}
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 概率和信息论}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle \RSa \bot \RSb$ & $\RSa$和$\RSb$相互独立的随机变量 \\
$\displaystyle \RSa \bot \RSb \mid \RSc $ & 给定$\RSc$后条件独立 \\
$\displaystyle P(\RSa)$ & 离散变量上的概率分布 \\
$\displaystyle p(\RSa)$ & 连续变量(或变量类型未指定时)上的概率分布 \\
$\displaystyle \RSa \sim P$ & 具有分布$P$的随机变量$\RSa$\\
$\displaystyle \SetE_{\RSx\sim P} [ f(x) ]\text{ or } \SetE f(x)$ & $f(x)$关于$P(\RSx)$的期望 \\
$\displaystyle \Var(f(x)) $ & $f(x)$在分布$P(\RSx)$下的方差 \\
$\displaystyle \Cov(f(x),g(x)) $ & $f(x)$和$g(x)$在分布$P(\RSx)$下的协方差 \\
$\displaystyle H(\RSx) $ & 随机变量$\RSx$的\gls{Shannon_entropy} \\
$\displaystyle D_{\text{KL}} ( P \Vert Q ) $ & P和Q的\gls{KL_divergence} \\
$\displaystyle \mathcal{N} ( \Vx ; \Vmu , \VSigma)$ & 均值为$\Vmu$协方差为$\VSigma$,$\Vx$上的\gls{gaussian_distribution} \\
\end{tabular}
\egroup
\end{minipage}
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 函数}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle f: \SetA \rightarrow \SetB$ & 定义域为$\SetA$值域为$\SetB$的函数$f$ \\
$\displaystyle f \circ g $ & $f$和$g$的组合 \\
$\displaystyle f(\Vx ; \Vtheta) $ & 由$\Vtheta$参数化,关于$\Vx$的函数(有时为简化表示,我们忽略$\Vtheta$记为$f(\Vx)$ )\\
$\displaystyle \log x$ & $x$的自然对数 \\
$\displaystyle \sigma(x)$ & Logistic sigmoid, $\displaystyle \frac{1} {1 + \exp(-x)}$ \\
$\displaystyle \zeta(x)$ & Softplus, $\log(1 + \exp(x))$ \\
$\displaystyle || \Vx ||_p $ & $\Vx$的$L^p$范数 \\
$\displaystyle || \Vx || $ & $\Vx$的$L^2$范数 \\
$\displaystyle x^+$ & $x$的正数部分, 即$\max(0,x)$\\
$\displaystyle \textbf{1}_\mathrm{condition}$ & 如果条件为真则为1,否则为0\\
\end{tabular}
\egroup
\end{minipage}
有时候我们使用函数$f$,它的参数是一个标量,但应用到一个向量、矩阵或张量: $f(\Vx)$, $f(\MX)$, or $f(\TSX)$ 。
这表示逐元素地将$f$应用于数组。
例如,$\TSC = \sigma(\TSX)$,则对于所有合法的$i$、$j$和$k$, $\TEC_{i,j,k} = \sigma(\TEX_{i,j,k})$。
\vspace{\notationgap}
\begin{minipage}{\textwidth}
\centerline{\bf 数据集和分布}
\bgroup
\def\arraystretch{1.5}
\begin{tabular}{cp{3.25in}}
$\displaystyle p_{\text{data}}$ & 数据生成分布 \\
$\displaystyle \hat{p}_{\text{train}}$ & 由训练集定义的经验分布 \\
$\displaystyle \SetX$ & 训练样本的集合 \\
$\displaystyle \Vx^{(i)}$ & 数据集的第$i$个样本(输入)\\
$\displaystyle y^{(i)}\text{ or }\Vy^{(i)}$ & \gls{supervised_learning}中与$\Vx^{(i)}$关联的目标 \\
$\displaystyle \MX$ & $m \times n$ 的矩阵,其中行$\MX_{i,:}$为输入样本$\Vx^{(i)}$ \\
\end{tabular}
\egroup
\end{minipage}