-
Notifications
You must be signed in to change notification settings - Fork 5
/
options.py
160 lines (144 loc) · 5.7 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import os
import torch
import random
import string
import yaml
from easydict import EasyDict as edict
import time
import sys
from misc import utils
from misc.utils import log
# torch.backends.cudnn.enabled = False
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.deterministic = True
def parse_arguments(args):
"""
Parse arguments from command line.
Syntax: --key1.key2.key3=value --> value
--key1.key2.key3= --> None
--key1.key2.key3 --> True
--key1.key2.key3! --> False
--key1.key2.key3=value, --> list
"""
opt_cmd = {}
for arg in args:
assert(arg.startswith("--"))
if "=" not in arg[2:]:
key_str, value = (arg[2:-1], "false") if arg[-1] == "!" else (arg[2:], "true")
else:
key_str, value = arg[2:].split("=")
keys_sub = key_str.split(".")
opt_sub = opt_cmd
for k in keys_sub[:-1]:
if k not in opt_sub:
opt_sub[k] = {}
opt_sub = opt_sub[k]
assert keys_sub[-1] not in opt_sub, keys_sub[-1]
loaded_value = yaml.safe_load(value)
if isinstance(loaded_value, str) and ',' in loaded_value:
loaded_value = [int(x) if x.isdigit() else x for x in loaded_value.split(',') if x.strip()]
opt_sub[keys_sub[-1]] = loaded_value
opt_cmd = edict(opt_cmd)
return opt_cmd
def set(opt_cmd={}):
log.info("setting configurations...")
# load config from yaml file
assert("yaml" in opt_cmd)
fname = "configs/{}.yaml".format(opt_cmd.yaml)
opt_base = load_options(fname)
# override with command line arguments
opt = override_options(opt_base, opt_cmd, key_stack=[], safe_check=True)
process_options(opt)
log.options(opt)
return opt
def load_options(fname):
with open(fname) as file:
opt = edict(yaml.safe_load(file))
if "_parent_" in opt:
# load parent yaml file(s) as base options
parent_fnames = opt.pop("_parent_")
if type(parent_fnames) is str:
parent_fnames = [parent_fnames]
for parent_fname in parent_fnames:
opt_parent = load_options(parent_fname)
opt_parent = override_options(opt_parent, opt, key_stack=[])
opt = opt_parent
print("loading {}...".format(fname))
return opt
def override_options(opt, opt_over, key_stack=None, safe_check=False):
for key, value in opt_over.items():
if isinstance(value, dict):
# parse child options (until leaf nodes are reached)
opt[key] = override_options(opt.get(key, dict()), value, key_stack=key_stack+[key], safe_check=safe_check)
else:
# ensure command line argument to override is also in yaml file
if safe_check and key not in opt:
add_new = None
while add_new not in ["y", "n"]:
key_str = ".".join(key_stack+[key])
add_new = input("\"{}\" not found in original opt, add? (y/n) ".format(key_str))
if add_new == "n":
print("safe exiting...")
exit()
opt[key] = value
return opt
def process_options(opt):
if opt.name is None:
opt.name = time.strftime("%b%d_%H%M%S").lower()
if isinstance(getattr(opt, "gpu_ids"), int):
opt.gpu_ids = [opt.gpu_ids]
if '_debug' in opt.name:
if hasattr(opt, 'data_train'):
opt.data_train.max_len = 20
if hasattr(opt, 'data_val'):
opt.data_val.max_len = 1
if hasattr(opt, 'data_test'):
for x in opt.data_test:
opt.data_test[x].max_len = 1
opt.max_epoch = 2
# set seed
if opt.seed is not None:
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
if opt.seed != 0:
opt.name = str(opt.name)+"_seed{}".format(opt.seed)
else:
# create random string as run ID
randkey = "".join(random.choice(string.ascii_uppercase) for _ in range(4))
opt.name = str(opt.name)+"_{}".format(randkey)
# other default options
opt.output_path = os.path.join(opt.output_root, opt.name)
os.makedirs(opt.output_path, exist_ok=True)
# save run commands
with open(os.path.join(opt.output_path, 'run.bash'), 'a+') as f:
command = 'python %s\n' % (' '.join(sys.argv))
f.write(command)
opt.device = "cpu" if opt.cpu or not torch.cuda.is_available() else "cuda:{}".format(opt.gpu_ids[0])
def save_options_file(opt):
opt_fname = "{}/options.yaml".format(opt.output_path)
if os.path.isfile(opt_fname):
with open(opt_fname) as file:
opt_old = yaml.safe_load(file)
if opt != opt_old:
# prompt if options are not identical
opt_new_fname = "{}/options_temp.yaml".format(opt.output_path)
with open(opt_new_fname, "w") as file:
yaml.safe_dump(utils.to_dict(opt), file, default_flow_style=False, indent=4)
print("existing options file found (different from current one)...")
os.system("diff {} {}".format(opt_fname, opt_new_fname))
os.system("rm {}".format(opt_new_fname))
override = None
while override not in ["y", "n"]:
override = input("override? (y/n) ")
if override == "n":
print("safe exiting...")
exit()
else:
print("existing options file found (identical)")
else:
print("(creating new options file...)")
with open(opt_fname, "w") as file:
yaml.safe_dump(utils.to_dict(opt), file, default_flow_style=False, indent=4)