Given an array of n integers nums and a target, find the number of index triplets i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
Example:
Input: nums = [-2,0,1,3]
, and target = 2
Output: 2
Explanation: Because there are two triplets which sums are less than 2:
[-2,0,1]
[-2,0,3]
Follow up: Could you solve it in O(n2) runtime?
class Solution:
def threeSumSmaller(self, nums: List[int], target: int) -> int:
def threeSumSmaller(nums, start, end, target):
count = 0
while start < end:
if nums[start] + nums[end] < target:
count += (end - start)
start += 1
else:
end -= 1
return count
nums.sort()
n, count = len(nums), 0
for i in range(n - 2):
count += threeSumSmaller(nums, i + 1, n - 1, target - nums[i])
return count
class Solution {
public int threeSumSmaller(int[] nums, int target) {
Arrays.sort(nums);
int n = nums.length;
int count = 0;
for (int i = 0; i < n - 2; ++i) {
count += threeSumSmaller(nums, i + 1, n - 1, target - nums[i]);
}
return count;
}
private int threeSumSmaller(int[] nums, int start, int end, int target) {
int count = 0;
while (start < end) {
if (nums[start] + nums[end] < target) {
count += (end - start);
++start;
} else {
--end;
}
}
return count;
}
}