forked from thu-ml/RoboticsDiffusionTransformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.sh
59 lines (51 loc) · 1.89 KB
/
eval.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
export NCCL_IB_HCA=mlx5_0:1,mlx5_1:1,mlx5_2:1,mlx5_3:1,mlx5_4:1,mlx5_7:1,mlx5_8:1,mlx5_9:1
export NCCL_IB_DISABLE=0
export NCCL_SOCKET_IFNAME=bond0
export NCCL_DEBUG=INFO
export NCCL_NVLS_ENABLE=0
export TEXT_ENCODER_NAME="google/t5-v1_1-xxl"
export VISION_ENCODER_NAME="google/siglip-so400m-patch14-384"
export OUTPUT_DIR="./checkpoints/rdt-finetune-1b"
export CFLAGS="-I/usr/include"
export LDFLAGS="-L/usr/lib/x86_64-linux-gnu"
export CUTLASS_PATH="/path/to/cutlass"
export WANDB_PROJECT="robotics_diffusion_transformer"
export CUDA_VISIBLE_DEVICES=5
if [ ! -d "$OUTPUT_DIR" ]; then
mkdir "$OUTPUT_DIR"
echo "Folder '$OUTPUT_DIR' created"
else
echo "Folder '$OUTPUT_DIR' already exists"
fi
# For run in a single node/machine
# accelerate launch main.py \
# --deepspeed="./configs/zero2.json" \
# ...
# --master_port=2000fix RuntimeError:message: address already in use:
deepspeed --master_port=2000 \
--hostfile=hostfile.txt main.py \
--deepspeed="./configs/zero2.json" \
--pretrained_model_name_or_path="robotics-diffusion-transformer/rdt-1b" \
--pretrained_text_encoder_name_or_path=$TEXT_ENCODER_NAME \
--pretrained_vision_encoder_name_or_path=$VISION_ENCODER_NAME \
--output_dir=$OUTPUT_DIR \
--train_batch_size=32 \
--sample_batch_size=8 \
--max_train_steps=10 \
--checkpointing_period=1000 \
--sample_period=1 \
--checkpoints_total_limit=40 \
--lr_scheduler="constant" \
--learning_rate=1e-4 \
--dataloader_num_workers=8 \
--image_aug \
--dataset_type="finetune" \
--state_noise_snr=40 \
--load_from_hdf5 \
--report_to=wandb \
--precomp_lang_embed
# Use this to resume= training from some previous checkpoint
# --resume_from_checkpoint=="checkpoint-36000" \
# Use this to load from saved lanuage instruction embeddings,
# instead of calculating it during training
# --precomp_lang_embed \