You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/machine-learning/tutorials/iris-clustering.md
+5-6Lines changed: 5 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -3,7 +3,7 @@ title: Cluster iris flowers using a clustering learner - ML.NET
3
3
description: Learn how to use ML.NET in a clustering scenario
4
4
author: pkulikov
5
5
ms.author: johalex
6
-
ms.date: 03/18/2019
6
+
ms.date: 04/08/2019
7
7
ms.topic: tutorial
8
8
ms.custom: mvc, seodec18
9
9
#Customer intent: As a developer, I want to use ML.NET so that I can build a model to cluster iris flowers based on its parameters.
@@ -13,7 +13,7 @@ ms.custom: mvc, seodec18
13
13
> [!NOTE]
14
14
> This topic refers to ML.NET, which is currently in Preview, and material may be subject to change. For more information, see the [ML.NET introduction](https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet).
15
15
16
-
This tutorial and related sample are currently using **ML.NET version 0.11**. For more information, see the release notes at the [dotnet/machinelearning GitHub repo](https://github.com/dotnet/machinelearning/tree/master/docs/release-notes).
16
+
This tutorial and related sample are currently using **ML.NET 1.0 RC (Release Candidate) (version `1.0.0-preview`)**. For more information, see the release notes at the [dotnet/machinelearning GitHub repo](https://github.com/dotnet/machinelearning/tree/master/docs/release-notes).
17
17
18
18
This tutorial illustrates how to use ML.NET to build a [clustering model](../resources/tasks.md#clustering) for the [iris flower data set](https://en.wikipedia.org/wiki/Iris_flower_data_set).
19
19
@@ -122,17 +122,16 @@ The <xref:Microsoft.ML.MLContext?displayProperty=nameWithType> class represents
122
122
123
123
Add the following code to the `Main` method to setup the way to load data:
124
124
125
-
[!code-csharp[Create text loader](~/samples/machine-learning/tutorials/IrisFlowerClustering/Program.cs#SetupTextLoader)]
125
+
[!code-csharp[Create text loader](~/samples/machine-learning/tutorials/IrisFlowerClustering/Program.cs#CreateDataView)]
126
126
127
-
Load the data using the generic `MLContext.Data.LoadFromTextFile` wrapper for the [LoadFromTextFile method](xref:Microsoft.ML.TextLoaderSaverCatalog.LoadFromTextFile%60%601%28Microsoft.ML.DataOperationsCatalog,System.String,System.Char,System.Boolean,System.Boolean,System.Boolean,System.Boolean%29). It returns a
128
-
<xref:Microsoft.Data.DataView.IDataView> which infers the dataset schema from the `IrisData` data model type, uses the dataset header and is separated by a comma.
127
+
The generic [`MLContext.Data.LoadFromTextFile` extension method](xref:Microsoft.ML.TextLoaderSaverCatalog.LoadFromTextFile%60%601%28Microsoft.ML.DataOperationsCatalog,System.String,System.Char,System.Boolean,System.Boolean,System.Boolean,System.Boolean%29) infers the data set schema from the provided `IrisData` type and returns <xref:Microsoft.ML.IDataView> which can be used as input for transformers.
129
128
130
129
## Create a learning pipeline
131
130
132
131
For this tutorial, the learning pipeline of the clustering task comprises two following steps:
133
132
134
133
- concatenate loaded columns into one **Features** column, which is used by a clustering trainer;
135
-
- use a <xref:Microsoft.ML.Trainers.KMeansPlusPlusTrainer> trainer to train the model using the k-means++ clustering algorithm.
134
+
- use a <xref:Microsoft.ML.Trainers.KMeansTrainer> trainer to train the model using the k-means++ clustering algorithm.
0 commit comments