Skip to content

Commit 599dc92

Browse files
committed
update baselines and sync to master/resolve conflicts.
1 parent d0eb457 commit 599dc92

File tree

3 files changed

+7311
-4821
lines changed

3 files changed

+7311
-4821
lines changed

src/Microsoft.ML/CSharpApi.cs

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7320,7 +7320,7 @@ public enum LightGbmArgumentsEvalMetricType
73207320

73217321

73227322
/// <summary>
7323-
/// Train a LightGBM binary class model. This API requires Microsoft.ML.LightGBM nuget.
7323+
/// Train a LightGBM binary class model.
73247324
/// </summary>
73257325
public sealed partial class LightGbmBinaryClassifier : Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithGroupId, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithWeight, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithLabel, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInput, Microsoft.ML.ILearningPipelineItem
73267326
{
@@ -7525,7 +7525,7 @@ namespace Trainers
75257525
{
75267526

75277527
/// <summary>
7528-
/// Train a LightGBM multi class model. This API requires Microsoft.ML.LightGBM nuget.
7528+
/// Train a LightGBM multi class model.
75297529
/// </summary>
75307530
public sealed partial class LightGbmClassifier : Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithGroupId, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithWeight, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithLabel, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInput, Microsoft.ML.ILearningPipelineItem
75317531
{
@@ -7730,7 +7730,7 @@ namespace Trainers
77307730
{
77317731

77327732
/// <summary>
7733-
/// Train a LightGBM ranking model. This API requires Microsoft.ML.LightGBM nuget.
7733+
/// Train a LightGBM ranking model.
77347734
/// </summary>
77357735
public sealed partial class LightGbmRanker : Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithGroupId, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithWeight, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithLabel, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInput, Microsoft.ML.ILearningPipelineItem
77367736
{
@@ -7935,7 +7935,7 @@ namespace Trainers
79357935
{
79367936

79377937
/// <summary>
7938-
/// LightGBM Regression. This API requires Microsoft.ML.LightGBM nuget.
7938+
/// LightGBM Regression
79397939
/// </summary>
79407940
public sealed partial class LightGbmRegressor : Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithGroupId, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithWeight, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInputWithLabel, Microsoft.ML.Runtime.EntryPoints.CommonInputs.ITrainerInput, Microsoft.ML.ILearningPipelineItem
79417941
{

test/BaselineOutput/Common/EntryPoints/core_ep-list.tsv

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -50,10 +50,10 @@ Trainers.FieldAwareFactorizationMachineBinaryClassifier Train a field-aware fact
5050
Trainers.GeneralizedAdditiveModelBinaryClassifier Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Runtime.FastTree.Gam TrainBinary Microsoft.ML.Runtime.FastTree.BinaryClassificationGamTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
5151
Trainers.GeneralizedAdditiveModelRegressor Trains a gradient boosted stump per feature, on all features simultaneously, to fit target values using least-squares. It mantains no interactions between features. Microsoft.ML.Runtime.FastTree.Gam TrainRegression Microsoft.ML.Runtime.FastTree.RegressionGamTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
5252
Trainers.KMeansPlusPlusClusterer K-means is a popular clustering algorithm. With K-means, the data is clustered into a specified number of clusters in order to minimize the within-cluster sum of squares. K-means++ improves upon K-means by using a better method for choosing the initial cluster centers. Microsoft.ML.Runtime.KMeans.KMeansPlusPlusTrainer TrainKMeans Microsoft.ML.Runtime.KMeans.KMeansPlusPlusTrainer+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+ClusteringOutput
53-
Trainers.LightGbmBinaryClassifier Train a LightGBM binary class model. This API requires Microsoft.ML.LightGBM nuget. Microsoft.ML.Runtime.LightGBM.LightGbm TrainBinary Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
54-
Trainers.LightGbmClassifier Train a LightGBM multi class model. This API requires Microsoft.ML.LightGBM nuget. Microsoft.ML.Runtime.LightGBM.LightGbm TrainMultiClass Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
55-
Trainers.LightGbmRanker Train a LightGBM ranking model. This API requires Microsoft.ML.LightGBM nuget. Microsoft.ML.Runtime.LightGBM.LightGbm TrainRanking Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RankingOutput
56-
Trainers.LightGbmRegressor LightGBM Regression. This API requires Microsoft.ML.LightGBM nuget. Microsoft.ML.Runtime.LightGBM.LightGbm TrainRegression Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
53+
Trainers.LightGbmBinaryClassifier Train a LightGBM binary class model. Microsoft.ML.Runtime.LightGBM.LightGbm TrainBinary Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
54+
Trainers.LightGbmClassifier Train a LightGBM multi class model. Microsoft.ML.Runtime.LightGBM.LightGbm TrainMultiClass Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput
55+
Trainers.LightGbmRanker Train a LightGBM ranking model. Microsoft.ML.Runtime.LightGBM.LightGbm TrainRanking Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RankingOutput
56+
Trainers.LightGbmRegressor LightGBM Regression Microsoft.ML.Runtime.LightGBM.LightGbm TrainRegression Microsoft.ML.Runtime.LightGBM.LightGbmArguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+RegressionOutput
5757
Trainers.LinearSvmBinaryClassifier Train a linear SVM. Microsoft.ML.Runtime.Learners.LinearSvm TrainLinearSvm Microsoft.ML.Runtime.Learners.LinearSvm+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
5858
Trainers.LogisticRegressionBinaryClassifier Logistic Regression is a classification method used to predict the value of a categorical dependent variable from its relationship to one or more independent variables assumed to have a logistic distribution. If the dependent variable has only two possible values (success/failure), then the logistic regression is binary. If the dependent variable has more than two possible values (blood type given diagnostic test results), then the logistic regression is multinomial.The optimization technique used for LogisticRegressionBinaryClassifier is the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Both the L-BFGS and regular BFGS algorithms use quasi-Newtonian methods to estimate the computationally intensive Hessian matrix in the equation used by Newton's method to calculate steps. But the L-BFGS approximation uses only a limited amount of memory to compute the next step direction, so that it is especially suited for problems with a large number of variables. The memory_size parameter specifies the number of past positions and gradients to store for use in the computation of the next step.This learner can use elastic net regularization: a linear combination of L1 (lasso) and L2 (ridge) regularizations. Regularization is a method that can render an ill-posed problem more tractable by imposing constraints that provide information to supplement the data and that prevents overfitting by penalizing models with extreme coefficient values. This can improve the generalization of the model learned by selecting the optimal complexity in the bias-variance tradeoff. Regularization works by adding the penalty that is associated with coefficient values to the error of the hypothesis. An accurate model with extreme coefficient values would be penalized more, but a less accurate model with more conservative values would be penalized less. L1 and L2 regularization have different effects and uses that are complementary in certain respects.l1_weight: can be applied to sparse models, when working with high-dimensional data. It pulls small weights associated features that are relatively unimportant towards 0. l2_weight: is preferable for data that is not sparse. It pulls large weights towards zero. Adding the ridge penalty to the regularization overcomes some of lasso's limitations. It can improve its predictive accuracy, for example, when the number of predictors is greater than the sample size. If x = l1_weight and y = l2_weight, ax + by = c defines the linear span of the regularization terms. The default values of x and y are both 1. An agressive regularization can harm predictive capacity by excluding important variables out of the model. So choosing the optimal values for the regularization parameters is important for the performance of the logistic regression model.<see href='http://en.wikipedia.org/wiki/L-BFGS'>Wikipedia: L-BFGS</see>.<see href='http://en.wikipedia.org/wiki/Logistic_regression'>Wikipedia: Logistic regression</see>.<see href='http://research.microsoft.com/apps/pubs/default.aspx?id=78900'>Scalable Training of L1-Regularized Log-Linear Models</see>.<see href='https://msdn.microsoft.com/en-us/magazine/dn904675.aspx'>Test Run - L1 and L2 Regularization for Machine Learning</see>. Microsoft.ML.Runtime.Learners.LogisticRegression TrainBinary Microsoft.ML.Runtime.Learners.LogisticRegression+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+BinaryClassificationOutput
5959
Trainers.LogisticRegressionClassifier Logistic Regression is a classification method used to predict the value of a categorical dependent variable from its relationship to one or more independent variables assumed to have a logistic distribution. If the dependent variable has only two possible values (success/failure), then the logistic regression is binary. If the dependent variable has more than two possible values (blood type given diagnostic test results), then the logistic regression is multinomial.The optimization technique used for LogisticRegressionBinaryClassifier is the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Both the L-BFGS and regular BFGS algorithms use quasi-Newtonian methods to estimate the computationally intensive Hessian matrix in the equation used by Newton's method to calculate steps. But the L-BFGS approximation uses only a limited amount of memory to compute the next step direction, so that it is especially suited for problems with a large number of variables. The memory_size parameter specifies the number of past positions and gradients to store for use in the computation of the next step.This learner can use elastic net regularization: a linear combination of L1 (lasso) and L2 (ridge) regularizations. Regularization is a method that can render an ill-posed problem more tractable by imposing constraints that provide information to supplement the data and that prevents overfitting by penalizing models with extreme coefficient values. This can improve the generalization of the model learned by selecting the optimal complexity in the bias-variance tradeoff. Regularization works by adding the penalty that is associated with coefficient values to the error of the hypothesis. An accurate model with extreme coefficient values would be penalized more, but a less accurate model with more conservative values would be penalized less. L1 and L2 regularization have different effects and uses that are complementary in certain respects.l1_weight: can be applied to sparse models, when working with high-dimensional data. It pulls small weights associated features that are relatively unimportant towards 0. l2_weight: is preferable for data that is not sparse. It pulls large weights towards zero. Adding the ridge penalty to the regularization overcomes some of lasso's limitations. It can improve its predictive accuracy, for example, when the number of predictors is greater than the sample size. If x = l1_weight and y = l2_weight, ax + by = c defines the linear span of the regularization terms. The default values of x and y are both 1. An agressive regularization can harm predictive capacity by excluding important variables out of the model. So choosing the optimal values for the regularization parameters is important for the performance of the logistic regression model.<see href='http://en.wikipedia.org/wiki/L-BFGS'>Wikipedia: L-BFGS</see>.<see href='http://en.wikipedia.org/wiki/Logistic_regression'>Wikipedia: Logistic regression</see>.<see href='http://research.microsoft.com/apps/pubs/default.aspx?id=78900'>Scalable Training of L1-Regularized Log-Linear Models</see>.<see href='https://msdn.microsoft.com/en-us/magazine/dn904675.aspx'>Test Run - L1 and L2 Regularization for Machine Learning</see>. Microsoft.ML.Runtime.Learners.LogisticRegression TrainMultiClass Microsoft.ML.Runtime.Learners.MulticlassLogisticRegression+Arguments Microsoft.ML.Runtime.EntryPoints.CommonOutputs+MulticlassClassificationOutput

0 commit comments

Comments
 (0)