|
| 1 | +import re |
| 2 | + |
| 3 | +import torch |
| 4 | +from transformers import AutoTokenizer |
| 5 | + |
| 6 | +from outlines.serve.vllm import RegexLogitsProcessor, _patched_apply_logits_processors |
| 7 | + |
| 8 | + |
| 9 | +class MockModel: |
| 10 | + tokenizer = AutoTokenizer.from_pretrained("gpt2") |
| 11 | + |
| 12 | + |
| 13 | +def sample_from_logits(logits): |
| 14 | + probs = torch.exp(logits) / torch.sum(torch.exp(logits)) |
| 15 | + return torch.multinomial(probs, 1).item() |
| 16 | + |
| 17 | + |
| 18 | +def test_time_regexp(): |
| 19 | + pattern = r"(0?[1-9]|1[0-2]):[0-5]\d\s?(am|pm)?" |
| 20 | + llm = MockModel() |
| 21 | + logits_processor = RegexLogitsProcessor(pattern, llm) |
| 22 | + |
| 23 | + token_ids = [] |
| 24 | + while True: |
| 25 | + random_scores = -10 + 20 * torch.rand(len(llm.tokenizer.vocab)) |
| 26 | + logits = logits_processor( |
| 27 | + seq_id=0, |
| 28 | + input_ids=token_ids, |
| 29 | + scores=random_scores, |
| 30 | + ) |
| 31 | + new_token_id = sample_from_logits(logits) |
| 32 | + if new_token_id == llm.tokenizer.eos_token_id: |
| 33 | + break |
| 34 | + token_ids.append(new_token_id) |
| 35 | + |
| 36 | + assert re.fullmatch(pattern, llm.tokenizer.decode(token_ids)) is not None |
| 37 | + |
| 38 | + |
| 39 | +def test_time_regexp_multiple_samples(): |
| 40 | + num_seq = 64 |
| 41 | + |
| 42 | + pattern = r"(0?[1-9]|1[0-2]):[0-5]\d\ ?(am|pm)?" |
| 43 | + llm = MockModel() |
| 44 | + |
| 45 | + class MockSeqData: |
| 46 | + def __init__(self): |
| 47 | + self.output_token_ids = [] |
| 48 | + |
| 49 | + class MockSamplingParams: |
| 50 | + logits_processors = [RegexLogitsProcessor(pattern, llm)] |
| 51 | + |
| 52 | + class MockSamplingMeta: |
| 53 | + seq_groups = [[range(num_seq), MockSamplingParams()]] # seq_ids |
| 54 | + seq_data = {seq_id: MockSeqData() for seq_id in range(num_seq)} |
| 55 | + |
| 56 | + sampling_meta = MockSamplingMeta() |
| 57 | + |
| 58 | + results = [] |
| 59 | + while True: |
| 60 | + complete_seq_ids = set() |
| 61 | + |
| 62 | + logits = torch.randn(len(sampling_meta.seq_data), len(llm.tokenizer.vocab)) |
| 63 | + new_logits = _patched_apply_logits_processors(logits, sampling_meta) |
| 64 | + seq_ids = sorted(sampling_meta.seq_groups[0][0]) |
| 65 | + for logits_row, seq_id in zip(new_logits, seq_ids): |
| 66 | + new_token_id = sample_from_logits(logits_row) |
| 67 | + if new_token_id == llm.tokenizer.eos_token_id: |
| 68 | + complete_seq_ids.add(seq_id) |
| 69 | + results.append(sampling_meta.seq_data[seq_id].output_token_ids) |
| 70 | + else: |
| 71 | + sampling_meta.seq_data[seq_id].output_token_ids.append(new_token_id) |
| 72 | + |
| 73 | + if complete_seq_ids: |
| 74 | + seq_datas = [ |
| 75 | + sd |
| 76 | + for seq_id, sd in sampling_meta.seq_data.items() |
| 77 | + if seq_id not in complete_seq_ids |
| 78 | + ] |
| 79 | + sampling_meta.seq_data = { |
| 80 | + i: seq_data for i, seq_data in enumerate(seq_datas) |
| 81 | + } |
| 82 | + sampling_meta.seq_groups[0][0] = range(len(sampling_meta.seq_data)) |
| 83 | + |
| 84 | + if not sampling_meta.seq_data: |
| 85 | + break |
| 86 | + |
| 87 | + assert len(results) == num_seq |
| 88 | + for result in results: |
| 89 | + print(llm.tokenizer.decode(result)) |
| 90 | + assert re.fullmatch(pattern, llm.tokenizer.decode(result)) is not None |
0 commit comments