-
Notifications
You must be signed in to change notification settings - Fork 341
/
Copy pathutils.py
178 lines (145 loc) · 5.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six.moves
from datetime import datetime
import sys
import math
import time
from data import inputs, standardize_image
import numpy as np
import tensorflow as tf
from detect import *
import re
RESIZE_AOI = 256
RESIZE_FINAL = 227
# Modifed from here
# http://stackoverflow.com/questions/3160699/python-progress-bar#3160819
class ProgressBar(object):
DEFAULT = 'Progress: %(bar)s %(percent)3d%%'
FULL = '%(bar)s %(current)d/%(total)d (%(percent)3d%%) %(remaining)d to go'
def __init__(self, total, width=40, fmt=DEFAULT, symbol='='):
assert len(symbol) == 1
self.total = total
self.width = width
self.symbol = symbol
self.fmt = re.sub(r'(?P<name>%\(.+?\))d',
r'\g<name>%dd' % len(str(total)), fmt)
self.current = 0
def update(self, step=1):
self.current += step
percent = self.current / float(self.total)
size = int(self.width * percent)
remaining = self.total - self.current
bar = '[' + self.symbol * size + ' ' * (self.width - size) + ']'
args = {
'total': self.total,
'bar': bar,
'current': self.current,
'percent': percent * 100,
'remaining': remaining
}
six.print_('\r' + self.fmt % args, end='')
def done(self):
self.current = self.total
self.update(step=0)
print('')
# Read image files
class ImageCoder(object):
def __init__(self):
# Create a single Session to run all image coding calls.
config = tf.ConfigProto(allow_soft_placement=True)
self._sess = tf.Session(config=config)
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
self.crop = tf.image.resize_images(self._decode_jpeg, (RESIZE_AOI, RESIZE_AOI))
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self.crop, #self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def make_multi_image_batch(filenames, coder):
"""Process a multi-image batch, each with a single-look
Args:
filenames: list of paths
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
"""
images = []
for filename in filenames:
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
image = coder.decode_jpeg(image_data)
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
image = standardize_image(crop)
images.append(image)
image_batch = tf.stack(images)
return image_batch
def make_multi_crop_batch(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
"""
# Read the image file.
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
image = coder.decode_jpeg(image_data)
crops = []
print('Running multi-cropped image')
h = image.shape[0]
w = image.shape[1]
hl = h - RESIZE_FINAL
wl = w - RESIZE_FINAL
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
crops.append(standardize_image(crop))
crops.append(standardize_image(tf.image.flip_left_right(crop)))
corners = [ (0, 0), (0, wl), (hl, 0), (hl, wl), (int(hl/2), int(wl/2))]
for corner in corners:
ch, cw = corner
cropped = tf.image.crop_to_bounding_box(image, ch, cw, RESIZE_FINAL, RESIZE_FINAL)
crops.append(standardize_image(cropped))
flipped = standardize_image(tf.image.flip_left_right(cropped))
crops.append(standardize_image(flipped))
image_batch = tf.stack(crops)
return image_batch
def face_detection_model(model_type, model_path):
model_type_lc = model_type.lower()
if model_type_lc == 'yolo_tiny':
from yolodetect import PersonDetectorYOLOTiny
return PersonDetectorYOLOTiny(model_path)
elif model_type_lc == 'yolo_face':
from yolodetect import FaceDetectorYOLO
return FaceDetectorYOLO(model_path)
elif model_type == 'dlib':
from dlibdetect import FaceDetectorDlib
return FaceDetectorDlib(model_path)
return ObjectDetectorCascadeOpenCV(model_path)