-
Notifications
You must be signed in to change notification settings - Fork 74
/
assemble.py
126 lines (107 loc) · 4.18 KB
/
assemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import numpy as np
from unifold.data.protein import Protein
from ..modules.featurization import atom14_to_atom37
from ..modules.frame import Frame
def expand_frames(frames: Frame, ops: Frame) -> torch.Tensor:
"""
Args:
frames: Rigid of shape [*, NR]
ops: Rigid of shape [NG]
Returns:
Tensor of shape [*, NGxNR, 4, 4]
"""
batch_shape = frames.shape[:-1]
ret = ops[..., None].compose(frames[..., None, :]).to_tensor_4x4()
ret = ret.reshape(*batch_shape, -1, 4, 4)
return ret
def expand_sc_frames(sc_frames: Frame, ops: Frame) -> torch.Tensor:
"""
Args:
frames: Rigid of shape [*, NR]
ops: Rigid of shape [NG]
Returns:
Tensor of shape [*, NGxNR, 4, 4]
"""
batch_shape = sc_frames.shape[:-2]
ret = ops[..., None, None].compose(sc_frames[..., None, :, :]).to_tensor_4x4()
ret = ret.reshape(*batch_shape, -1, sc_frames.shape[-1], 4, 4)
return ret
def expand_atom_positions(positions: torch.Tensor, ops: Frame) -> torch.Tensor:
"""
Args:
positions: Tensor of shape [*, NR, 37, 3]
ops: Rigid of shape [NG]
Returns:
Tensor of shape [*, NG * NR]
"""
batch_shape = positions.shape[:-3]
position_shape = positions.shape[-2:]
ret = ops[..., None, None].apply(positions[..., None, :, :, :])
ret = ret.reshape(*batch_shape, -1, *position_shape)
return ret
def expand_symmetry(sm_out, batch):
ops = Frame.from_tensor_4x4(batch["symmetry_opers"][-1, 0, ...].float()) # reduce recycle and batch dims.
num_expand = ops.shape[0]
frames = Frame.from_tensor_4x4(sm_out["frames"].float())
sidechain_frames = Frame.from_tensor_4x4(sm_out["sidechain_frames"].float())
positions = sm_out["positions"].float()
def repeat_fn(tensor, repeats, dim):
shape = [1 for _ in tensor.shape]
shape[dim] = repeats
return tensor.repeat(shape)
symm_out = {
"frames": expand_frames(frames, ops),
"sidechain_frames": expand_sc_frames(sidechain_frames, ops),
"unnormalized_angles": repeat_fn(sm_out["unnormalized_angles"], num_expand, dim=-3),
"angles": repeat_fn(sm_out["angles"], num_expand, dim=-3),
"single": repeat_fn(sm_out["single"], num_expand, dim=-2),
"positions": expand_atom_positions(positions, ops),
}
feats_expand_dims = {
"residx_atom37_to_atom14": -2,
"entity_id": -1,
"num_sym": -1,
"aatype": -1,
"residue_index": -1,
"atom37_atom_exists": -2,
"seq_mask": -1,
}
symm_feats = {
k: repeat_fn(batch[k], num_expand, dim=v)[-1] for k, v in feats_expand_dims.items() if k in batch
}
asym_id = batch["asym_id"]
def asym_fn(asym_id, i, num_asym):
ret = asym_id + num_asym * i
ret[asym_id == 0] = 0
return ret
asym_ids = torch.cat(
[asym_fn(asym_id, i, batch["num_asym"]) for i in range(num_expand)], dim=-1
).long()
symm_feats["asym_id"] = asym_ids[-1]
symm_feats["num_sym"] = symm_feats["num_sym"] * num_expand
symm_feats["num_asym"] = batch["num_asym"][-1] * num_expand
if "all_atom_positions" in batch:
symm_feats["all_atom_positions"] = expand_atom_positions(batch["all_atom_positions"], ops)[-1]
symm_feats["all_atom_mask"] = repeat_fn(batch["all_atom_mask"], num_expand, -2)[-1]
symm_out["expand_final_atom_positions"] = atom14_to_atom37(symm_out["positions"], symm_feats)
symm_out["expand_final_atom_mask"] = symm_feats["atom37_atom_exists"]
return symm_feats, symm_out
def assembly_from_prediction(
result,
b_factors=None) -> Protein:
chain_index = result["expand_batch"]["asym_id"]
aatype = result["expand_batch"]["aatype"]
residue_index = result["expand_batch"]["residue_index"]
atom_positions = result["expand_final_atom_positions"]
atom_mask = result["expand_final_atom_mask"]
if b_factors is None:
b_factors = np.zeros_like(atom_mask)
return Protein(
aatype=aatype,
atom_positions=atom_positions,
atom_mask=atom_mask,
residue_index=residue_index + 1,
chain_index=chain_index - 1,
b_factors=b_factors
)