forked from saffsd/langid.py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LDfeatureselect.py
554 lines (456 loc) · 17.9 KB
/
LDfeatureselect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#!/usr/bin/env python
"""
LDfeatureselect.py -
LD (Lang-Domain) feature extractor
Marco Lui November 2011
Based on research by Marco Lui and Tim Baldwin.
Copyright 2011 Marco Lui <saffsd@gmail.com>. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed
or implied, of the copyright holder.
"""
######
# Default values
# Can be overriden with command-line options
######
MAX_NGRAM_ORDER = 4 # largest order of n-grams to consider
TOP_DOC_FREQ = 15000 # number of tokens to consider for each order
FEATURES_PER_LANG = 300 # number of features to select for each language
NUM_BUCKETS = 64 # number of buckets to use in k-v pair generation
import os, sys, optparse
import collections
import csv
import shutil
import tempfile
import marshal
import numpy
import cPickle
import multiprocessing as mp
from itertools import tee, imap
from collections import defaultdict
from datetime import datetime
from contextlib import closing
class disklist(collections.Iterable, collections.Sized):
"""
Disk-backed queue. Not to be used for object persistence.
Items can be added to the queue, and the queue can be iterated,
"""
def __init__(self, temp_dir=None):
self.fileh = tempfile.TemporaryFile(dir=temp_dir)
self.count = 0
def __iter__(self):
self.fileh.seek(0)
while True:
try:
yield marshal.load(self.fileh)
except (EOFError, ValueError, TypeError):
break
def __len__(self):
return self.count
def append(self, value):
marshal.dump(value, self.fileh)
self.count += 1
class Tokenizer(object):
def __init__(self, max_order):
self.max_order = max_order
def __call__(self, seq):
max_order = self.max_order
t = tee(seq, max_order)
for i in xrange(max_order):
for j in xrange(i):
# advance iterators, ignoring result
t[i].next()
while True:
token = tuple(tn.next() for tn in t)
if len(token) < max_order: break
for n in xrange(max_order):
yield token[:n+1]
for a in xrange(max_order-1):
for b in xrange(1, max_order-a):
yield token[a:a+b]
class Enumerator(object):
"""
Enumerator object. Returns a larger number each call.
Can be used with defaultdict to enumerate a sequence of items.
"""
def __init__(self, start=0):
self.n = start
def __call__(self):
retval = self.n
self.n += 1
return retval
def entropy(v, axis=0):
"""
Optimized implementation of entropy. This version is faster than that in
scipy.stats.distributions, particularly over long vectors.
"""
v = numpy.array(v, dtype='float')
s = numpy.sum(v, axis=axis)
with numpy.errstate(divide='ignore', invalid='ignore'):
r = numpy.log(s) - numpy.nansum(v * numpy.log(v), axis=axis) / s
return r
def chunk(seq, chunksize):
"""
Break a sequence into chunks not exceeeding a predetermined size
"""
seq_iter = iter(seq)
while True:
chunk = tuple(seq_iter.next() for i in range(chunksize))
if len(chunk) == 0:
break
yield chunk
def unmarshal_iter(f):
"""
Iterator over a file object, which unmarshals
item by item.
"""
while True:
try:
yield marshal.load(f)
except EOFError:
break
def split_info(f_masks, class_map):
num_inst = f_masks.shape[1]
f_count = f_masks.sum(1) # sum across instances
f_weight = f_count / float(num_inst)
f_entropy = numpy.empty((f_masks.shape[0], f_masks.shape[2]), dtype=float)
# TODO: This is the main cost. See if this can be made faster.
for i, band in enumerate(f_masks):
f_entropy[i] = entropy((class_map[:,None,:] * band[...,None]).sum(0), axis=-1)
# nans are introduced by features that are entirely in a single band
# We must redefine this to 0 as otherwise we may lose information about other bands.
# TODO: Push this back into the definition of entropy?
f_entropy[numpy.isnan(f_entropy)] = 0
return (f_weight * f_entropy).sum(0) #sum across discrete bands
def infogain(nonzero, class_map):
if nonzero.dtype != bool:
raise TypeError, "expected a boolean feature map"
# Feature map should be a boolean map
num_inst, num_feat = nonzero.shape
# Calculate the entropy of the class distribution over all instances
H_P = entropy(class_map.sum(0))
# compute information gain
zero = numpy.logical_not(nonzero)
x = numpy.concatenate((zero[None], nonzero[None]))
feature_weights = H_P - split_info(x, class_map)
return feature_weights
def setup_pass1(maxorder, b_freq, b_list, locks):
global __maxorder, __b_freq, __b_list, __locks
__maxorder = maxorder
__locks = locks
__b_freq = b_freq
__b_list = b_list
def pass1(arg):
"""
Chunk files into a doc->term mapping,
and simultaneously build a term->df count.
The term->df counts are redistributed to
buckets via python's in-built hash function.
This is basically an inversion step, so that
now we are chunked on the term axis rather
than the document axis.
"""
global __maxorder, __b_freq, __b_list, __locks
chunk_id, chunk_paths = arg
extractor = Tokenizer(__maxorder)
term_doc_freq = defaultdict(int)
term_doc_list = defaultdict(list)
for doc_index, path in enumerate(chunk_paths):
with open(path) as f:
tokenset = set(extractor(f.read()))
for token in tokenset:
term_doc_freq[token] += 1
term_doc_list[token].append(doc_index)
for key in term_doc_freq:
bucket_index = hash(key) % len(__locks)
with __locks[bucket_index]:
os.write(__b_freq[bucket_index], marshal.dumps((key, term_doc_freq[key])))
os.write(__b_list[bucket_index], marshal.dumps((key, chunk_id, term_doc_list[key])))
return len(term_doc_freq)
def setup_pass2(maxorder, doc_freq_fd, lock):
global __maxorder, __doc_freq, __doc_freq_lock
__maxorder = maxorder
__doc_freq = doc_freq_fd
__doc_freq_lock = lock
def pass2(bucket):
"""
Take a term->df count bucket and sum it up
"""
global __maxorder, __doc_freq
fileh = os.fdopen(bucket)
doc_count = defaultdict(int)
count = 0
for key, value in unmarshal_iter(fileh):
doc_count[key] += value
count += 1
with __doc_freq_lock:
for item in doc_count.iteritems():
os.write(__doc_freq, marshal.dumps(item))
return count
def setup_pass3(features, chunk_offsets, cm_domain, cm_lang):
global __features, __chunk_offsets, __cm_domain, __cm_lang
__features = features
__chunk_offsets = chunk_offsets
__cm_domain = cm_domain
__cm_lang = cm_lang
def pass3(chunk_path):
"""
In this pass we actually compute information gain.
For each chunk, we need to load up the corresponding feature map.
This includes the filtering of top-DF features as identified in
the previous pass.
Then we compute information gain with respect to the domain
class map and the binarized language class maps.
"""
global __features, __chunk_offsets, __cm_domain, __cm_lang
# Select only our listed features
term_doc_map = defaultdict(list)
with open(chunk_path) as f:
for key, chunk_id, docids in unmarshal_iter(f):
if key in __features:
offset = __chunk_offsets[chunk_id]
for docid in docids:
term_doc_map[key].append(docid+offset)
num_inst = __chunk_offsets[-1]
num_feat = len(term_doc_map)
# Build the feature map for the chunk
feature_map = numpy.zeros((num_inst, num_feat), dtype=bool)
terms = []
for termid, term in enumerate(term_doc_map):
terms.append(term)
for docid in term_doc_map[term]:
feature_map[docid, termid] = True
# Compute information gain over all domains as well as binarized per-language
w_lang = []
w_domain = infogain(feature_map, __cm_domain)
for langid in range(__cm_lang.shape[1]):
pos = cm_lang[:, langid]
neg = numpy.logical_not(pos)
cm = numpy.hstack((neg[:,None], pos[:,None]))
w = infogain(feature_map, cm)
w_lang.append( w - w_domain )
w_lang = numpy.vstack(w_lang)
return terms, w_lang, w_domain
def write_weights(path, weights):
w = dict(weights)
with open(path, 'w') as f:
writer = csv.writer(f, delimiter = '\t')
for k in sorted(w, key=w.get, reverse=True):
writer.writerow((repr(k), w[k]))
class ClassIndexer(object):
def __init__(self, paths):
self.lang_index = defaultdict(Enumerator())
self.domain_index = defaultdict(Enumerator())
self.doc_keys = []
self.index_paths(paths)
def index_paths(self, paths):
for path in paths:
# split the path into identifying components
path, docname = os.path.split(path)
path, lang = os.path.split(path)
path, domain = os.path.split(path)
# obtain a unique key for the file
key = domain,lang,docname
self.doc_keys.append(key)
# index the language and the domain
lang_id = self.lang_index[lang]
domain_id = self.domain_index[domain]
def get_class_maps(self):
num_instances = len(self.doc_keys)
cm_domain = numpy.zeros((num_instances, len(self.domain_index)), dtype='bool')
cm_lang = numpy.zeros((num_instances, len(self.lang_index)), dtype='bool')
# Populate the class maps
for docid, (domain, lang, docname) in enumerate(self.doc_keys):
cm_domain[docid, self.domain_index[domain]] = True
cm_lang[docid, self.lang_index[lang]] = True
return cm_domain, cm_lang
def select_LD_features(features, lang_index, chunk_paths, chunk_offsets, cm_domain, cm_lang, options):
print "computing information gain"
# Instead of receiving a single feature map, we now receive a list of paths,
# each corresponding to a chunk containing a portion of the final feature set
# for each of these chunks we need to compute the IG of each feature WRT to
# domain as well as WRT to each language.
# The parallelism should come at the feature chunk level,
# so we can collapse IG into a non-parallelized function.
#setup_pass3(features, chunk_offsets, cm_domain, cm_lang)
#pass3_out = map(pass3, chunk_paths)
with closing( mp.Pool(options.job_count, setup_pass3,
(features, chunk_offsets, cm_domain, cm_lang))
) as pool:
pass3_out = pool.imap_unordered(pass3, chunk_paths, chunksize=1)
num_chunk = len(chunk_paths)
w_lang = []
w_domain = []
terms = []
for i, (t, w_l, w_d) in enumerate(pass3_out):
w_lang.append(w_l)
w_domain.append(w_d)
terms.extend(t)
print "processed chunk (%d/%d)" % (i+1, num_chunk)
w_lang = numpy.hstack(w_lang)
w_domain = numpy.concatenate(w_domain)
terms = ["".join(t) for t in terms]
if options.weights:
write_weights(os.path.join(options.weights, 'domain'), zip(terms, w_domain))
# compile the final feature set
final_feature_set = set()
for lang in lang_index:
lang_weights = w_lang[lang_index[lang]]
term_inds = numpy.argsort(lang_weights)[-options.feats_per_lang:]
for t in term_inds:
final_feature_set.add(terms[t])
if options.weights:
path = os.path.join(options.weights, lang)
write_weights(path, zip(terms,lang_weights))
print ' output %s weights to: "%s"' % (lang, path)
return final_feature_set
def get_classmaps(paths):
indexer = ClassIndexer(paths)
cm_domain, cm_lang = indexer.get_class_maps()
print "langs:", indexer.lang_index.keys()
print "domains:", indexer.domain_index.keys()
return cm_domain, cm_lang, indexer.lang_index
def build_inverted_index(paths, options):
b_f = []
b_l = []
b_f_paths = []
b_l_paths = []
b_locks = []
for i in range(options.buckets):
handle, path = tempfile.mkstemp(prefix="bucket_freq-")
b_f.append(handle)
b_f_paths.append(path)
handle, path = tempfile.mkstemp(prefix="bucket_list-")
b_l.append(handle)
b_l_paths.append(path)
b_locks.append(mp.Lock())
chunk_size = min(len(paths) / (options.job_count*2), 100)
path_chunks = list(chunk(paths, chunk_size))
# PASS 1: Tokenize documents into sets of terms
with closing( mp.Pool(options.job_count, setup_pass1,
(options.max_order, b_f, b_l, b_locks))
) as pool:
pass1_out = pool.imap_unordered(pass1, enumerate(path_chunks), chunksize=1)
doc_count = defaultdict(int)
total = len(paths)/chunk_size + (0 if len(paths)%chunk_size else 1)
print "chunk size: %d (%d chunks)" % (chunk_size, total)
wrotekeys = 0
for i, keycount in enumerate(pass1_out):
print "tokenized chunk (%d/%d)" % (i+1,total)
wrotekeys += keycount
print "wrote a total of %d keys" % wrotekeys
# rewind all the file descriptors
for bucket in b_l + b_f:
os.lseek(bucket, 0, os.SEEK_SET)
# PASS 2: Compile document frequency counts
doc_freq_fd, doc_count_path = tempfile.mkstemp(prefix="doccount-")
with closing( mp.Pool(options.job_count, setup_pass2,
(options.max_order, doc_freq_fd, mp.Lock()))
) as pool:
pass2_out = pool.imap_unordered(pass2, b_f, chunksize=1)
readkeys = 0
for i, keycount in enumerate(pass2_out):
readkeys += keycount
print "processed bucket (%d/%d)" % (i+1, NUM_BUCKETS)
print "read back a total of %d keys (%d short)" % ( readkeys, wrotekeys-readkeys)
# close all file descriptors
for fd in b_l + b_f:
os.close(fd)
# delete the b_f files
for path in b_f_paths:
os.remove(path)
doc_count = {}
with os.fdopen(doc_freq_fd) as f:
f.seek(0)
for key, value in unmarshal_iter(f):
doc_count[key] = value
print "unique features:", len(doc_count)
os.remove(doc_count_path)
# Work out the set of features to compute IG
features = set()
for i in range(1, options.max_order+1):
d = dict( (k, doc_count[k]) for k in doc_count if len(k) == i)
features |= set(sorted(d, key=d.get, reverse=True)[:options.df_tokens])
features = sorted(features)
print "candidate features: ", len(features)
# Work out the path chunk start offsets
chunk_offsets = [0]
for c in path_chunks:
chunk_offsets.append(chunk_offsets[-1] + len(c))
return b_l_paths, features, chunk_offsets
if __name__ == "__main__":
parser = optparse.OptionParser()
parser.add_option("-o","--output", dest="outfile", help="output features to FILE", metavar="FILE")
parser.add_option("-c","--corpus", dest="corpus", help="read corpus from DIR", metavar="DIR")
parser.add_option("-j","--jobs", dest="job_count", type="int", help="number of processes to use", default=mp.cpu_count()+4)
parser.add_option("-w","--weights",dest="weights", help="output weights to DIR (optional)", metavar="DIR")
parser.add_option("-t","--temp",dest="temp", help="store temporary files in DIR", metavar="DIR", default=tempfile.gettempdir())
parser.add_option("--max_order", dest="max_order", type="int", help="highest n-gram order to use", default=MAX_NGRAM_ORDER)
parser.add_option("--feats_per_lang", dest="feats_per_lang", type="int", help="number of features to retain for each language", default=FEATURES_PER_LANG)
parser.add_option("--df_tokens", dest="df_tokens", type="int", help="number of tokens to consider for each n-gram order", default=TOP_DOC_FREQ)
parser.add_option("--buckets", dest="buckets", type="int", help="numer of buckets to use in k-v pair generation", default=NUM_BUCKETS)
options, args = parser.parse_args()
# check options
if not options.corpus:
parser.error("corpus(-c) must be specified")
if options.weights:
if not os.path.exists(options.weights):
os.mkdir(options.weights)
# work out output path
if options.outfile:
output_path = options.outfile
elif options.corpus:
if os.path.basename(options.corpus):
output_path = os.path.basename(options.corpus+'.LDfeatures')
else:
output_path = options.corpus+'.LDfeatures'
else:
output_path = 'a.LDfeatures'
# set tempdir
tempfile.tempdir = options.temp
# display paths
print "output path:", output_path
print "temp path:", options.temp
if options.corpus:
print "corpus path:", options.corpus
if options.weights:
print "weights path:", options.weights
# build a list of paths
paths = []
for dirpath, dirnames, filenames in os.walk(options.corpus):
for f in filenames:
paths.append(os.path.join(dirpath, f))
print "will tokenize %d files" % len(paths)
# Tokenize
cm_domain, cm_lang, lang_index = get_classmaps(paths)
chunk_paths, features, chunk_offsets = build_inverted_index(paths, options)
# Convert features from character tuples to strings
#features = [ ''.join(f) for f in features ]
# Compute LD from inverted index
try:
final_feature_set = select_LD_features(features, lang_index, chunk_paths, chunk_offsets, cm_domain, cm_lang, options)
except OSError, e:
print e
import pdb;pdb.pm()
# Output
print "selected %d features" % len(final_feature_set)
with open(output_path,'w') as f:
for feat in final_feature_set:
print >>f, repr(feat)
print 'wrote features to "%s"' % output_path