-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_SplitCP_MFCS_ALexpts.py
479 lines (341 loc) · 24.9 KB
/
run_SplitCP_MFCS_ALexpts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
import os
import sys
import time
from importlib import reload
module_path = os.path.abspath(os.path.join('../'))
if module_path not in sys.path:
sys.path.append(module_path)
import numpy as np
import assay_mfcs
import calibrate_mfcs as cal
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import RandomForestRegressor
import pandas as pd
import argparse
from datetime import date
## Added for active learning experiments
from sklearn.neighbors import KernelDensity
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel, ConstantKernel, RBF
from sklearn.kernel_ridge import KernelRidge
from sklearn import decomposition
import matplotlib.pyplot as plt
def get_f_std(y_std, gpr):
params = gpr.kernel_.get_params()
normalized_noise_var = params["k2__noise_level"]
y_train_var = gpr._y_train_std ** 2
y_pred_var = y_std ** 2
f_pred_var = y_pred_var - (y_train_var * normalized_noise_var)
f_std = np.sqrt(f_pred_var)
return f_std
def get_PCA(x):
pca = decomposition.PCA(n_components=1)
pca.fit(x)
x_pca = pca.transform(x)
return x_pca
def noisy_measurements(idx_y, Y_vals_all, errs, noise_magnitude, seed: int = None):
"""
Given indices of sequences, return noisy measurements (using estimated measurement noise SD).
:param idx_y: indices for y values
:param muh: predictor function whose predictions are used for estimating measurement noise magnitude
:param seed: int, random seed
:return: numpy array of noisy measurements corresponding to provided sequence indices
"""
# np.random.seed(seed)
noisy_n = np.array([np.random.normal(loc=Y_vals_all[i], scale=noise_magnitude*errs[i]) for i in idx_y])
# enforce non-negative measurement since enrichment scores are always non-negative
return noisy_n
def compute_errors_for_measurements(X_vals, Y_vals):
"""
Given indices of sequences, return noisy measurements (using estimated measurement noise SD).
:param Y_vals: Y values
:param muh: predictor function whose predictions are used for estimating measurement noise magnitude
:param seed: int, random seed
:return: numpy array of noisy measurements corresponding to provided sequence indices
"""
krr = KernelRidge(alpha=1.0)
krr.fit(X_vals, Y_vals)
return abs(Y_vals - krr.predict(X_vals))
def compute_weight_bound_binary_search(prob_bound_inf, query_vals_cal, query_vals_pool_sorted, start, end, alpha=0.1):
"""
:param prob_bound_inf : Largest acceptable probability of infinite interval widths (0,1); e.g., 1.0 is unbounded, 0.0 is bounded query function (Appendix C)
:param query_vals_cal : Unnormalized, unbounded weights (exponentiated tilt on predicted fitness values for calibration data)
:param query_vals_pool_sorted : Unnormalized, unbounded weights (exponentiated tilt on predicted fitness values for pool) already sorted
Compute B : largest bound for which the probability of an infinite interval width is maintained below 'prob_bound_inf'
"""
mid = int((end + start) / 2)
b = query_vals_pool_sorted[mid]
total_weight_cal = np.sum(np.minimum(query_vals_cal, b))
unnormalized_weights_pool = np.minimum(query_vals_pool_sorted, b)
inds_infty_pool = np.where(unnormalized_weights_pool / (total_weight_cal + unnormalized_weights_pool) >= alpha)[0]
if (start + 1 == end):
return start, query_vals_pool_sorted[start]
if (np.sum(unnormalized_weights_pool[inds_infty_pool]) / np.sum(unnormalized_weights_pool) <= prob_bound_inf):
return compute_weight_bound_binary_search(prob_bound_inf, query_vals_cal, query_vals_pool_sorted, start=mid, end=end, alpha=alpha)
else:
return compute_weight_bound_binary_search(prob_bound_inf, query_vals_cal, query_vals_pool_sorted, start=start, end=mid, alpha=alpha)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run multistep FCS experiments.')
parser.add_argument('--dataset', type=str, default='airfoil', help='Dataset name.')
parser.add_argument('--n_initial_all', type=int, help='Initial number of training points', required = True)
parser.add_argument('--lmbdas', nargs='+', help='Values of lmbda to try', required = True)
parser.add_argument('--n_seed', type=int, default=500, help='Number of trials')
parser.add_argument('--n_steps', type=int, default=10, help='Number of MFCS steps (active learning iterations)')
parser.add_argument('--alpha', type=float, default=0.1, help='alpha value corresponding to 1-alpha target coverage')
# parser.add_argument('--K_vals', nargs='+', help='Values of K to try', required = True)
parser.add_argument('--muh', type=str, default='GP', help='Muh predictor.')
parser.add_argument('--seed_initial', type=int, default=0, help='Initial seed')
parser.add_argument('--replacement', type=bool, default=True, help='Sample queries with or without replacement')
parser.add_argument('--n_queries_ann', type=int, default=1, help='Number of queries')
parser.add_argument('--n_val', type=int, default=250, help='Number of validation points for MSE')
parser.add_argument('--p_split_train', type=float, default=0.5, help='Initial proportion of data that goes to training')
parser.add_argument('--add_to_train_split_prob', type=float, default=0.5, help='Probability of adding a query point to training')
parser.add_argument('--weight_depth_maxes', nargs='+', default=[1,2,3,4], help='Estimation depths of weight adjustments to include')
parser.add_argument('--kernel_str', type=str, default='dot_white', help='Kernel type for GP')
parser.add_argument('--noise_magnitude', type=float, default=0.1, help='Positive value controlling noise magnitude. 1 means noise is one std')
parser.add_argument('--initial_sampling_bias', type=float, default=1.0, help='Expontential tilting of how training & calibration data are sampled from the full dataset, w.r.t. first PCA of the data.')
parser.add_argument('--save_weight_computations', type=bool, default=False, help='Bool about whether to save weights')
parser.add_argument('--noise_level', type=float, default=1.0, help='White kernel noise level')
parser.add_argument('--sigma_0', type=float, default=1.0, help='Dot product kernel noise level')
parser.add_argument('--aci_step_size', type=float, default=0.005, help='ACI step size gamma')
parser.add_argument('--prob_bound_inf', type=float, default=1.0, help='prob_bound_inf : max acceptable probability of infinite interval width. prob_bound_inf=1.0 --> unbounded query function; prob_bound_inf=0.0 --> bounded query function (Appendix C)')
parser.add_argument('--record_weights', type=bool, default=False, help='Bool indicating whether to record the calibration + test point weights (takes extra storage and time)')
## python run_SplitCP_MultistepFCS_expts.py --dataset airfoil --n_initial_all 48 --lmbdas 10 --n_seed 200 --p_split_train 0.6
args = parser.parse_args()
dataset = args.dataset
n_initial_all = args.n_initial_all
lmbdas = [float(lmbda) for lmbda in args.lmbdas]
lmbdas_str = ''.join(str(l) for l in lmbdas)
n_seed = args.n_seed
alpha = args.alpha
muh = args.muh
n_steps = args.n_steps
n_queries_ann = args.n_queries_ann
n_test = n_queries_ann
replacement = args.replacement
add_to_train_split_prob = args.add_to_train_split_prob
weight_depth_maxes = [int(dep) for dep in args.weight_depth_maxes]
seed_initial = args.seed_initial
n_val = args.n_val
p_split_train = args.p_split_train
str_dep_maxes = ''
for d in weight_depth_maxes:
str_dep_maxes += str(d)
kernel_str = args.kernel_str
noise_magnitude = args.noise_magnitude
initial_sampling_bias = args.initial_sampling_bias
save_weight_computations = args.save_weight_computations
noise_level = args.noise_level
sigma_0 = args.sigma_0
aci_step_size = args.aci_step_size
prob_bound_inf = args.prob_bound_inf
record_weights = args.record_weights
start_time = time.time()
if (muh == 'GP'):
if(kernel_str == 'RBF'):
kernel = RBF()
elif (kernel_str == 'constant'):
kernel = ConstantKernel()
else:
kernel = DotProduct(sigma_0=sigma_0) + WhiteKernel(noise_level=noise_level)
muh_fun = GaussianProcessRegressor(kernel=kernel,random_state=0)
method_names = ['split']
for d in weight_depth_maxes:
method_names.append('wsplit_' + str(d))
method_names.append('aci')
print("Running with methods : ", method_names)
print('Running with '+ dataset + '_' + muh + '_nInitial' + str(n_initial_all) + '_steps' + str(n_steps) + '_nseed' + str(n_seed) + '_lmbda' + lmbdas_str + '_wDepths' + str_dep_maxes + '_PIs_addTrainProb'+str(add_to_train_split_prob)+'_replace'+str(replacement)+'_kernel'+kernel_str +'pcaExpSampling'+str(initial_sampling_bias) + str(aci_step_size)+ '_probBoundInf' + str(prob_bound_inf))
n_train_proper_initial = int(np.floor(n_initial_all * p_split_train))
n_cal_initial = n_initial_all - n_train_proper_initial
if (record_weights):
results_by_seed = pd.DataFrame(columns = np.concatenate([['seed', 'step', 't_cal', 'dataset', 'muh_fun','method','coverage','width', 'MSE', 'muh_test', 'y_test', 'B', 'prop_B', 'alpha_aci'], ['w_cal' + str(i) for i in range(0, n_cal_initial+n_steps-1)], ['w_test']]))
else:
results_by_seed = pd.DataFrame(columns = np.concatenate([['seed', 'step', 't_cal', 'dataset', 'muh_fun','method','coverage','width', 'MSE', 'muh_test', 'y_test', 'B', 'prop_B', 'alpha_aci']]))
## Likelihood under training input distribution, p_X in paper (uniform distribution in protein design experiments).
## Due to initializing with IID *uniform random* samples, the following two lines will yield equivalent results, but both
## are provided to correspond to different factorizations given in Appendix B.1 (direct likelihood factorization approach)
## and Appendix B.3 (likelihood-*ratio*-based factorization) respectively.
ptrain_fn = lambda x: np.ones([x.shape[0]]) ## Trivial denominator (=1) for direct likelihood factorization (as in Appendix B.1 in paper)
# ptrain_fn = lambda x: (1.0 / np.power(2, 13)) * np.ones([x.shape[0]]) ## Likelihood-ratio based factorization (see Appendix B.3 in paper)
# Read dataset
if (dataset == 'airfoil'):
airfoil = pd.read_csv(os.getcwd().removesuffix('bash_scripts') + '/datasets/airfoil/airfoil.txt', sep = '\t', header=None)
airfoil.columns = ["Frequency","Angle","Chord","Velocity","Suction","Sound"]
X_airfoil = airfoil.iloc[:, 0:5].values
X_airfoil[:, 0] = np.log(X_airfoil[:, 0])
X_airfoil[:, 4] = np.log(X_airfoil[:, 4])
Y_airfoil = airfoil.iloc[:, 5].values
n_airfoil = len(Y_airfoil)
errs_airfoil = compute_errors_for_measurements(X_airfoil, Y_airfoil)
elif (dataset == 'wine'):
winequality_red = pd.read_csv(os.getcwd().removesuffix('bash_scripts') + '/datasets/wine/winequality-red.csv', sep=';')
X_wine = winequality_red.iloc[:, 0:11].values
Y_wine = winequality_red.iloc[:, 11].values
n_wine = len(Y_wine)
errs_wine = compute_errors_for_measurements(X_wine, Y_wine)
print("X_wine shape : ", X_wine.shape)
elif (dataset == 'communities'):
# UCI Communities and Crime Data Set
# download from:
# http://archive.ics.uci.edu/ml/datasets/communities+and+crime
communities_data = np.loadtxt(os.getcwd().removesuffix('bash_scripts') + '/datasets/communities/communities.data',delimiter=',',dtype=str)
# remove categorical predictors
communities_data = np.delete(communities_data,np.arange(5),1)
# remove predictors with missing values
communities_data = np.delete(communities_data,\
np.argwhere((communities_data=='?').sum(0)>0).reshape(-1),1)
communities_data = communities_data.astype(float)
X_communities = communities_data[:,:-1]
Y_communities = communities_data[:,-1]
n_communities = len(Y_communities)
errs_communities = compute_errors_for_measurements(X_communities, Y_communities)
print("X_communities shape : ", X_communities.shape)
elif (dataset == 'meps'):
meps_data = np.loadtxt(os.getcwd().removesuffix('bash_scripts') + '/datasets/meps/meps_data.txt')
X_meps = meps_data[:,:-1]
Y_meps = meps_data[:,-1]
n_meps = len(Y_meps)
errs_meps = compute_errors_for_measurements(X_meps, Y_meps)
print("X_meps shape : ", X_meps.shape)
elif (dataset == 'blog'):
blog_data = np.loadtxt(os.getcwd().removesuffix('bash_scripts') + '/datasets/blog/blogData_train.csv',delimiter=',')
X_blog = blog_data[:,:-1]
Y_blog = np.log(1+blog_data[:,-1])
n_blog = len(Y_blog)
errs_blog = compute_errors_for_measurements(X_blog, Y_blog)
X_all = eval('X_'+dataset)
all_inds = np.arange(eval('n_'+dataset))
split_mfcs_AL = cal.SplitConformalMFCS(muh_fun, ptrain_fn, X_all)
## Loop for repeating experiment with different lmbdas (shift magnitudes)
for l, lmbda in enumerate(lmbdas):
for seed in range(seed_initial, seed_initial + n_seed):
print("seed : ", seed)
Y_all = noisy_measurements(all_inds, eval('Y_'+dataset), eval('errs_'+dataset), noise_magnitude, seed)
## Note: Validation set won't change, train and pool will
np.random.seed(seed)
val_inds = list(np.random.choice(eval('n_'+dataset),n_val,replace=False))
non_val_inds = np.setdiff1d(all_inds, val_inds)
X_nonval = X_all[non_val_inds]
## Bias initial sampling of training and calibration data to simulate selection bias in active learning
X_nonval_pca = get_PCA(X_nonval).flatten()
X_nonval_pca_minmax = (X_nonval_pca - min(X_nonval_pca)) / (max(X_nonval_pca) - min(X_nonval_pca))
X_nonval_pca_minmax_nonvals_exp = np.exp(X_nonval_pca_minmax * initial_sampling_bias)
X_nonval_pca_minmax_nonvals_exp_normed = X_nonval_pca_minmax_nonvals_exp / np.sum(X_nonval_pca_minmax_nonvals_exp)
train_inds = list(np.random.choice(non_val_inds, n_initial_all, replace=replacement, p=X_nonval_pca_minmax_nonvals_exp_normed))
## Pool inds are those not in training or validation data.
pool_inds = list(np.setdiff1d(np.setdiff1d(np.arange(eval('n_'+dataset)),train_inds), val_inds))
## Create validation set (won't change)
Xval = eval('X_'+dataset)[val_inds]
yval = Y_all[val_inds]
idx_split = list(np.random.permutation(train_inds))
train_inds_split, cal_inds_split = list(idx_split[:n_train_proper_initial]), list(idx_split[n_train_proper_initial:])
## Note: Calibration set for split won't change
Xtrain_split = eval('X_'+dataset)[train_inds_split]
ytrain_split = Y_all[train_inds_split]
Xcal_split = eval('X_'+dataset)[cal_inds_split]
ycal_split = Y_all[cal_inds_split]
## Pool inds for split are initially the same but will be different later
pool_inds_split = list(np.setdiff1d(np.setdiff1d(np.arange(eval('n_'+dataset)),train_inds), val_inds))
## Initialize train and pool data for sample splitting (will change)
Xpool_split = eval('X_'+dataset)[pool_inds_split]
ypool_split = Y_all[pool_inds_split]
## Iterate through active learning steps
exp_vals_pool_list_of_vecs_all_steps = []
w_split_mus_prev_steps = []
## t_cal = (num points in calibration set actively selected) + 1
t_cal = 1
## Initialize alpha_aci_curr to alpha
alpha_aci_curr = alpha
weight_bounds = []
for step in range(n_steps):
## 1. Fit Gaussian process regression and use it to select queries from pool
gpr_split = muh_fun.fit(Xtrain_split, ytrain_split)
## 2. Compute unnormalized weights for pool
y_preds_pool_split, std_preds_pool_split_ = gpr_split.predict(Xpool_split, return_std=True)
std_preds_pool_split = get_f_std(std_preds_pool_split_, gpr_split)
var_preds_pool_split = std_preds_pool_split**2
var_preds_pool_split_minmax_normed = (var_preds_pool_split) / (max(var_preds_pool_split) - min(var_preds_pool_split))
exp_var_preds_pool_split = np.exp(var_preds_pool_split_minmax_normed * lmbda)
exp_vals_pool_list_of_vecs_all_steps.append(exp_var_preds_pool_split)
exp_var_preds_pool_split_sorted = np.sort(exp_var_preds_pool_split)
## 3. Compute unnormalized weights for calibration data
ycal_preds_split, std_preds_cal_split_ = gpr_split.predict(Xcal_split, return_std=True)
std_preds_cal_split = get_f_std(std_preds_cal_split_, gpr_split)
var_preds_cal_split = std_preds_cal_split**2
var_preds_cal_split_minmax_normed = (var_preds_cal_split) / (max(var_preds_pool_split) - min(var_preds_pool_split))
exp_var_preds_cal_split = np.exp(var_preds_cal_split_minmax_normed * lmbda)
## 4. Compute bound on weight
i_B, B = compute_weight_bound_binary_search(prob_bound_inf, exp_var_preds_cal_split, exp_var_preds_pool_split_sorted, start=0, end=len(exp_var_preds_pool_split_sorted)-1, alpha=alpha)
weight_bounds.append(B)
## 5. Compute normalized pool weights and use those for sampling a query point
probs_pool_split = np.minimum(exp_var_preds_pool_split, B) / np.sum(np.minimum(exp_var_preds_pool_split, B))
query_ann_inds_split = list(np.random.choice(pool_inds_split, n_queries_ann, replace=replacement, p=probs_pool_split))
Xtest_split = eval('X_'+dataset)[query_ann_inds_split]
ytest_split = noisy_measurements(query_ann_inds_split, eval('Y_'+dataset), eval('errs_'+dataset), noise_magnitude, seed)
## 6. For later MSE calculation: Compute predictions on validation data
y_preds_val_split, std_preds_val_split_ = gpr_split.predict(Xval, return_std=True)
std_preds_val_split = get_f_std(std_preds_val_split_, gpr_split)
ytest_preds_split = gpr_split.predict(Xtest_split)
## 7. Only if sampling without replacement, remove queried point from pool
## (note, code not tested on without replacement case yet)
if (not replacement):
pool_inds_split = list(set(pool_inds_split) - set(query_ann_inds_split))
Xpool_split = eval('X_'+dataset)[pool_inds_split]
PIs, w_split_mus_prev_steps, weights_normalized_wsplit_all = split_mfcs_AL.compute_confidence_sets_active(Xtrain_split, Xcal_split, ytrain_split, ycal_split, Xtest_split, ytest_split, Xpool_split, w_split_mus_prev_steps, exp_vals_pool_list_of_vecs_all_steps, method_names, t_cal=t_cal, X_dataset = eval('X_'+dataset), n_cal_initial = n_cal_initial, alpha_aci_curr = alpha_aci_curr, weight_bounds = weight_bounds, weight_depth_maxes=weight_depth_maxes, lmbda = lmbda, bandwidth = 1.0, alpha=alpha, n_initial_all = n_initial_all, n_dataset = eval('n_'+dataset), replacement = replacement, record_weights = record_weights)
MSE_split = np.mean((y_preds_val_split - yval)**2)
for m_i, method in enumerate(method_names):
coverage_by_seed = ((PIs[method]['lower'] <= ytest_split)&(PIs[method]['upper'] >= ytest_split)).mean()
muh_test_by_seed = ytest_preds_split.mean()
coverage_all = ((PIs[method]['lower'] <= ytest_split)&(PIs[method]['upper'] >= ytest_split))
muh_test_all = ytest_preds_split
ytest_method = ytest_split
MSE = MSE_split
width_by_seed = (PIs[method]['upper'] - PIs[method]['lower']).median()
width_all = (PIs[method]['upper'] - PIs[method]['lower'])
if (m_i == 0 or method == 'aci'):
if (record_weights):
cal_test_weights = np.concatenate([np.repeat(1 / (n_cal_initial + t_cal), \
n_cal_initial + t_cal - 1), \
np.repeat(0, n_steps-t_cal), \
[1/(n_cal_initial + t_cal)]])
else:
if (record_weights):
cal_test_weights = np.concatenate([weights_normalized_wsplit_all[m_i-1][:-1], \
np.repeat(0, n_steps-t_cal), [weights_normalized_wsplit_all[m_i-1][-1]]])
prop_B = i_B / len(pool_inds_split)
if (record_weights):
results_by_seed.loc[len(results_by_seed)]=np.concatenate([[seed,step,t_cal-1, dataset, muh, method,coverage_by_seed,width_by_seed,MSE,\
muh_test_all[0], ytest_method[0], B, prop_B, alpha_aci_curr], cal_test_weights])
else:
results_by_seed.loc[len(results_by_seed)]=np.concatenate([[seed,step,t_cal-1, dataset, muh, method,coverage_by_seed,width_by_seed,MSE,\
muh_test_all[0], ytest_method[0], B, prop_B, alpha_aci_curr]])
if (method == 'aci'):
if (PIs[method]['lower'].values[0] <= ytest_split[0] and PIs[method]['upper'].values[0] >= ytest_split[0]):
alpha_aci_curr = min(alpha_aci_curr + aci_step_size * (alpha),1)
else:
alpha_aci_curr = max(alpha_aci_curr + aci_step_size * (alpha - 1),0)
## Add point that was queried for annotation to the training or calibration data
U = np.random.uniform()
if (U <= add_to_train_split_prob):
### Update train data for sample splitting
for q_ann in query_ann_inds_split:
train_inds_split.append(q_ann) ## Add queried samples to training set
Xtrain_split = eval('X_'+dataset)[train_inds_split]
ytrain_split = np.concatenate((ytrain_split, ytest_split))
## If added point to training data, then do not record this weight function or the exp pool weights
w_split_mus_prev_steps = w_split_mus_prev_steps[:-1]
exp_vals_pool_list_of_vecs_all_steps = exp_vals_pool_list_of_vecs_all_steps[:-1]
weight_bounds = weight_bounds[:-1]
else:
### Update calibration data for sample splitting
for q_ann in query_ann_inds_split:
cal_inds_split.append(q_ann) ## Add queried samples to training set
Xcal_split = eval('X_'+dataset)[cal_inds_split]
ycal_split = np.concatenate((ycal_split, ytest_split))
## Incrememnt the number of actively selected calibration points
t_cal += 1
if (((seed+1) % 50) == 0):
results_by_seed.to_csv(os.getcwd().removesuffix('bash_scripts') + '/results/'+ str(date.today()) + '_ALExpts_' + dataset + '_' + muh + '_nInitial' + str(n_initial_all) + '_steps' + str(n_steps) + '_nseed' + str(n_seed) + '_lmbda' + str(lmbda) + '_wDepths' + str_dep_maxes + '_propTrainInit'+ str(p_split_train) +'_addTrainProb'+str(add_to_train_split_prob)+'_noise'+str(noise_magnitude)+'_pcaExpSampling'+str(initial_sampling_bias)+ '_GPRnoise' + str(noise_level) + '_sigDotProd' + str(sigma_0)+ '_aciStepSize' + str(aci_step_size)+ '_probBoundInf' + str(prob_bound_inf) + '.csv',index=False)
end_time = time.time()
print("Total time (minutes) : ", (end_time - start_time)/60)
results_by_seed.to_csv(os.getcwd().removesuffix('bash_scripts') + '/results/'+ str(date.today()) + '_ALExpts_' + dataset + '_' + muh + '_nInitial' + str(n_initial_all) + '_steps' + str(n_steps) + '_nseed' + str(n_seed) + '_lmbda' + str(lmbda) + '_wDepths' + str_dep_maxes + '_PIs_propTrainInit'+ str(p_split_train) +'_addTrainProb'+str(add_to_train_split_prob)+'_noise'+str(noise_magnitude)+'_pcaExpSampling'+str(initial_sampling_bias)+ '_GPRnoise' + str(noise_level) + '_sigDotProd' + str(sigma_0)+ '_aciStepSize' + str(aci_step_size)+'_probBoundInf' + str(prob_bound_inf) +'.csv',index=False)