-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhybridli.py
156 lines (126 loc) · 5.21 KB
/
hybridli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import csv
import logging
import os
import sys
from llama_index.llms import Ollama
from llama_index.callbacks.base import CallbackManager
from llama_index import (
SimpleDirectoryReader,
ServiceContext,
StorageContext,
VectorStoreIndex,
load_index_from_storage,
)
from llama_index.text_splitter import SentenceSplitter
from llama_index.postprocessor.cohere_rerank import CohereRerank
from llama_index.embeddings.cohereai import CohereEmbedding
from configparser import ConfigParser
from llama_index.retrievers import BaseRetriever, BM25Retriever
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.vector_stores import FaissVectorStore
import chainlit as cl
import faiss
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
env_config = ConfigParser()
# Retrieve the cohere api key from the environmental variables
def read_config(parser: ConfigParser, location: str) -> None:
assert parser.read(location), f"Could not read config {location}"
#
CONFIG_FILE = os.path.join(".", ".env")
read_config(env_config, CONFIG_FILE)
cohere_api_key = env_config.get("cohere", "api_key").strip()
os.environ["COHERE_API_KEY"] = cohere_api_key
DATA_PATH = (
"C:/Users/andrew/OneDrive - Entegration Inc/Projects/oracle/SOURCE_DOCUMENTS/"
)
DB_PATH = "./storage"
@cl.on_chat_start
async def start():
# load documents
documents = SimpleDirectoryReader(DATA_PATH).load_data()
# initialize service context (set chunk size)
llm = Ollama(
temperature=0,
model="neural-chat",
)
embed_model = CohereEmbedding(
cohere_api_key=os.getenv("COHERE_API_KEY"),
model_name="embed-english-v3.0",
input_type="search_query",
)
service_context = ServiceContext.from_defaults(
llm=llm,
embed_model=embed_model,
text_splitter=SentenceSplitter(
separator="\n\n", chunk_size=512, chunk_overlap=30
),
callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
)
nodes = service_context.node_parser.get_nodes_from_documents(documents)
if not os.path.exists(DB_PATH):
vector_store = FaissVectorStore(
faiss.IndexFlatL2(1024)
) # cohere embeddings have 1024 dimensions
# initialize storage context (by default it's in-memory)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(
nodes, storage_context=storage_context, service_context=service_context
)
index.storage_context.persist(persist_dir=DB_PATH)
else:
vector_store = FaissVectorStore.from_persist_dir(DB_PATH)
storage_context = StorageContext.from_defaults(
vector_store=vector_store, persist_dir=DB_PATH
)
index = load_index_from_storage(
storage_context, service_context=service_context
)
# retireve the top N most similar nodes using embeddings
vector_retriever = index.as_retriever(similarity_top_k=3)
# retireve the top N most similar nodes using bm25
bm25_retriever = BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=3)
class HybridRetriever(BaseRetriever):
def __init__(self, vector_retriever, bm25_retriever):
self.vector_retriever = vector_retriever
self.bm25_retriever = bm25_retriever
super().__init__()
def _retrieve(self, query, **kwargs):
bm25_nodes = self.bm25_retriever.retrieve(query, **kwargs)
vector_nodes = self.vector_retriever.retrieve(query, **kwargs)
# combine the two lists of nodes
all_nodes = []
node_hashes = set()
for n in bm25_nodes + vector_nodes:
if n.node.hash not in node_hashes:
all_nodes.append(n)
node_hashes.add(n.node.hash)
return all_nodes
index.as_retriever(similarity_top_k=3)
hybrid_retriever = HybridRetriever(vector_retriever, bm25_retriever)
cohere_rerank = CohereRerank(api_key=os.getenv("COHERE_API_KEY"), top_n=6)
query_engine = RetrieverQueryEngine.from_args(
retriever=hybrid_retriever,
node_postprocessors=[cohere_rerank],
service_context=service_context,
streaming=True,
)
cl.user_session.set("query_engine", query_engine)
await cl.Message(author="Seraphina", content="Hello! How may I help you? ").send()
def log_chat(input_message, output_message):
with open("chatlog.csv", "a", newline="") as csvfile:
writer = csv.writer(csvfile)
writer.writerow([input_message.content, output_message.content])
@cl.on_message
async def main(message: cl.Message):
query_engine = cl.user_session.get("query_engine")
response = await cl.make_async(query_engine.query)(message.content)
response_message = cl.Message(content="")
for token in response.response_gen:
await response_message.stream_token(token=token)
if response.response_txt:
response_message.content = response.response_txt
await response_message.send()
log_chat(message, response_message)