-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ppi.py
132 lines (115 loc) · 4.22 KB
/
train_ppi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import dgl.nn as dglnn
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.data.ppi import PPIDataset
from dgl.dataloading import GraphDataLoader
from sklearn.metrics import f1_score
class GAT(nn.Module):
def __init__(self, in_size, hid_size, out_size, heads):
super().__init__()
self.gat_layers = nn.ModuleList()
# three-layer GAT
self.gat_layers.append(
dglnn.GATConv(in_size, hid_size, heads[0], activation=F.elu)
)
self.gat_layers.append(
dglnn.GATConv(
hid_size * heads[0],
hid_size,
heads[1],
residual=True,
activation=F.elu,
)
)
self.gat_layers.append(
dglnn.GATConv(
hid_size * heads[1],
out_size,
heads[2],
residual=True,
activation=None,
)
)
def forward(self, g, inputs):
h = inputs
for i, layer in enumerate(self.gat_layers):
h = layer(g, h)
if i == 2: # last layer
h = h.mean(1)
else: # other layer(s)
h = h.flatten(1)
return h
def evaluate(g, features, labels, model):
model.eval()
with torch.no_grad():
output = model(g, features)
pred = np.where(output.data.cpu().numpy() >= 0, 1, 0)
score = f1_score(labels.data.cpu().numpy(), pred, average="micro")
return score
def evaluate_in_batches(dataloader, device, model):
total_score = 0
for batch_id, batched_graph in enumerate(dataloader):
batched_graph = batched_graph.to(device)
features = batched_graph.ndata["feat"]
labels = batched_graph.ndata["label"]
score = evaluate(batched_graph, features, labels, model)
total_score += score
return total_score / (batch_id + 1) # return average score
def train(train_dataloader, val_dataloader, device, model):
# define loss function and optimizer
loss_fcn = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-3, weight_decay=0)
# training loop
for epoch in range(400):
model.train()
logits = []
total_loss = 0
# mini-batch loop
for batch_id, batched_graph in enumerate(train_dataloader):
batched_graph = batched_graph.to(device)
features = batched_graph.ndata["feat"].float()
labels = batched_graph.ndata["label"].float()
logits = model(batched_graph, features)
loss = loss_fcn(logits, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
print(
"Epoch {:05d} | Loss {:.4f} |".format(
epoch, total_loss / (batch_id + 1)
)
)
if (epoch + 1) % 5 == 0:
avg_score = evaluate_in_batches(
val_dataloader, device, model
) # evaluate F1-score instead of loss
print(
" Acc. (F1-score) {:.4f} ".format(
avg_score
)
)
if __name__ == "__main__":
print(f"Training PPI Dataset with DGL built-in GATConv module.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load and preprocess datasets
train_dataset = PPIDataset(mode="train")
val_dataset = PPIDataset(mode="valid")
test_dataset = PPIDataset(mode="test")
features = train_dataset[0].ndata["feat"]
# create GAT model
in_size = features.shape[1]
out_size = train_dataset.num_classes
model = GAT(in_size, 256, out_size, heads=[4, 4, 6]).to(device)
# model training
print("Training...")
train_dataloader = GraphDataLoader(train_dataset, batch_size=2)
val_dataloader = GraphDataLoader(val_dataset, batch_size=2)
train(train_dataloader, val_dataloader, device, model)
# test the model
print("Testing...")
test_dataloader = GraphDataLoader(test_dataset, batch_size=2)
avg_score = evaluate_in_batches(test_dataloader, device, model)
print("Test Accuracy (F1-score) {:.4f}".format(avg_score))