-
Notifications
You must be signed in to change notification settings - Fork 0
/
tail.js
482 lines (385 loc) · 17.2 KB
/
tail.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
* Tail.js - v1.07
*/
(function( Root, fnFactory ) {
Root.Tail = fnFactory();
} ( window, function() {
'use strict';
function Tail( Options ) {
this.m_Canvas = document.getElementById( Options.canvas_id );
this.m_nRootX = Options.root_pos_x !== undefined ? Options.root_pos_x : 0;
this.m_nRootY = Options.root_pos_y !== undefined ? Options.root_pos_y : this.m_Canvas.height / 2;
this.m_cSegments = Math.max( 2, Options.segment_count !== undefined ? Options.segment_count : 70 );
this.m_flTailLengthPercentage = Options.tail_length !== undefined ? Options.tail_length : 0.5;
this.m_strFillColor = Options.fill_color !== undefined ? Options.fill_color : 'black';
this.m_strStrokeColor = Options.stroke_color !== undefined ? Options.stroke_color : null;
this.m_flStrokeWidth = Options.stroke_width !== undefined ? Options.stroke_width : 0;
this.m_bCollideWithFloor = Options.collide_with_floor !== undefined ? Options.collide_with_floor : true;
this.m_fnGetBaseAngle = Options.get_base_angle_func !== undefined ? Options.get_base_angle_func : this.GetBaseAngle_DefaultImpl_;
this.m_fnGetMaxAngle = Options.get_max_angle_func !== undefined ? Options.get_max_angle_func : this.GetMaxAngle_DefaultImpl_;
this.m_fnGetPhase = Options.get_phase_func !== undefined ? Options.get_phase_func : this.GetPhase_DefaultImpl_;
this.m_fnGetCurlynessPoints = Options.get_curlyness_points_func !== undefined ? Options.get_curlyness_points_func : this.GetCurlynessPoints_DefaultImpl_;
this.m_fnGetCurlynessValues = Options.get_curlyness_values_func !== undefined ? Options.get_curlyness_values_func : this.GetCurlynessValues_DefaultImpl_;
this.m_fnGetTailWidthPoints = Options.get_tail_width_points_func !== undefined ? Options.get_tail_width_points_func : this.GetTailWidthPoints_DefaultImpl_;
this.m_fnGetTailWidthValues = Options.get_tail_width_values_func !== undefined ? Options.get_tail_width_values_func : this.GetTailWidthValues_DefaultImpl_;
this.m_fnFrantic = Options.frantic_func !== undefined ? Options.frantic_func : this.GetFrantic_DefaultImpl_;
this.m_bAnimate = Options.animate !== undefined ? Options.animate : true;
this.m_flNoiseBase = Math.random() * 10000;
this.m_bFirstFrame = true;
this.m_Noise = new SimplexNoise();
if ( !this.m_Canvas )
{
console.error( "Canvas with ID '" + Options.canvas_id + "' not found!" );
}
}
Tail.prototype.BIsVisible = function() {
return CatUtils.BIsInViewport( this.m_Canvas );
}
Tail.prototype.Render = function() {
if ( !this.m_Canvas )
return;
if ( !this.BIsVisible() )
return;
var ctx = this.m_Canvas.getContext( '2d' );
ctx.save();
var flTime = this.m_bAnimate ? CatUtils.GetTime() : 0;
var nWidth = this.m_Canvas.width;
var nHeight = this.m_Canvas.height;
var bDrawStroke = this.m_strStrokeColor && this.m_strStrokeColor.length && this.m_flStrokeWidth > 1.0;
ctx.clearRect ( 0 , 0 , nWidth, nHeight );
var flSegmentLength = nWidth / this.m_cSegments * this.m_flTailLengthPercentage;
ctx.lineCap = 'round';
// Make sure these values are sane. We need to do this check every frame since they're dynamic.
if ( this.m_fnGetCurlynessPoints( flTime ).length !== this.m_fnGetCurlynessValues( flTime ).length ||
this.m_fnGetTailWidthPoints( flTime ).length !== this.m_fnGetTailWidthValues( flTime ).length )
{
console.error( "Error: These need to be the same size, and both sorted in ascending order." )
}
var cPasses = bDrawStroke ? 2 : 1;
for ( var iPass = 0; iPass < cPasses; ++iPass ) {
var bStrokePass = cPasses > 1 && 0 == iPass;
var flLastAngle = 0;
// These are used to keep track of the transformation, since we can't access a context's transformation directly.
var flCurX = this.m_nRootX;
var flCurY = this.m_nRootY;
ctx.save();
ctx.translate( this.m_nRootX, this.m_nRootY );
for ( var iSegment = 0; iSegment < this.m_cSegments; ++iSegment ) {
var t = iSegment / this.m_cSegments;
var flTailWidth = this.GetTailWidth_( flTime, t );
var flNoise = this.m_Noise.noise( this.m_flNoiseBase + 10000 + flTime + t * .5, 100 ); // In [-1,1]
// This is how much we want the given angle to be weighed in, depending on which tail segment we're on. Angles towards the
// root have a greater influence on the movement.
var flCurly = this.GetCurlyness_( flTime, t );
var flFrantic = this.m_fnFrantic( flTime, t );
var flMaxAngle = this.m_fnGetMaxAngle( flTime, t );
var flAbsoluteAngle = CatUtils.DegreesToRadians( this.m_fnGetBaseAngle( flTime ) ) + flCurly * Math.min( CatUtils.DegreesToRadians( Math.sin( this.m_fnGetPhase( flTime, t ) + flTime + 2 * Math.PI * t * flNoise * flFrantic ) * flMaxAngle ), flMaxAngle );
var flNextX = flCurX + flSegmentLength * Math.cos( flAbsoluteAngle );
var flNextY = flCurY + flSegmentLength * Math.sin( flAbsoluteAngle );
var bZeroOutAngles = false;
if ( this.m_bCollideWithFloor && flNextY > this.m_nRootY )
{
// This would go through the floor -- adjust. Note that this calculation is a pretty bad approximation
// and will look better with increasing segment counts.
flNextY = this.m_nRootY;
// Zero out angles for the entire rest of the tail for this frame
bZeroOutAngles = true;
}
if ( bZeroOutAngles )
{
flAbsoluteAngle = 0;
}
var flCurrentAngle = flAbsoluteAngle - flLastAngle;
flLastAngle = flAbsoluteAngle;
ctx.rotate( flCurrentAngle );
var flLineWidth;
var strStrokeStyle;
if ( bStrokePass )
{
flLineWidth = flTailWidth * this.m_flStrokeWidth;
strStrokeStyle = this.m_strStrokeColor;
}
else
{
flLineWidth = flTailWidth;
strStrokeStyle = this.m_strFillColor;
}
ctx.lineWidth = flLineWidth;
ctx.strokeStyle = strStrokeStyle;
ctx.beginPath();
ctx.moveTo( 0, 0 );
ctx.lineTo( flSegmentLength, 0 );
ctx.stroke();
if ( iSegment < this.m_cSegments - 1 )
{
ctx.translate( flSegmentLength, 0 );
}
flCurX = flNextX;
flCurY = flNextY;
}
ctx.restore();
}
ctx.restore();
this.m_bFirstFrame = false;
}
Tail.prototype.GetCurlyness_ = function( flTime, t ) {
// Curlyness points and values are dynamic
// NOTE: We don't need to call these for every segment, but we do, because a callback can still change its result
// per segment with Math.random(), etc, which can be really cool looking.
var rgCurlynessPoints = this.m_fnGetCurlynessPoints( flTime );
var rgCurlynessValues = this.m_fnGetCurlynessValues( flTime );
var i = CatUtils.BinarySearch( t, rgCurlynessPoints );
return CatUtils.Interpolate(
t,
rgCurlynessPoints[ i ],
rgCurlynessPoints[ i + 1 ],
rgCurlynessValues[ i ],
rgCurlynessValues[ i + 1 ]
);
}
Tail.prototype.GetTailWidth_ = function( flTime, t ) {
// Tail values are dynamic in case you want to get crazy
// NOTE: We don't need to call these for every segment, but we do, because a callback can still change its result
// per segment with Math.random(), etc, which can be really cool looking.
var rgTailWidthPoints = this.m_fnGetTailWidthPoints( flTime );
var rgTailWidthValues = this.m_fnGetTailWidthValues( flTime );
var i = CatUtils.BinarySearch( t, rgTailWidthPoints );
return CatUtils.Interpolate(
t,
rgTailWidthPoints[ i ],
rgTailWidthPoints[ i + 1 ],
rgTailWidthValues[ i ],
rgTailWidthValues[ i + 1 ]
);
}
Tail.prototype.LogIfFirstFrame = function( s ) {
if ( !this.m_bFirstFrame )
return;
console.log( s );
}
// Private, default implementations for functions
Tail.prototype.GetBaseAngle_DefaultImpl_ = function( flTime ) { return 0; }
Tail.prototype.GetMaxAngle_DefaultImpl_ = function( flTime, t ) { return 20; }
Tail.prototype.GetPhase_DefaultImpl_ = function( flTime, t ) { return this.m_flNoiseBase; } // Returns a unique offset for this tail instance
Tail.prototype.GetCurlynessPoints_DefaultImpl_ = function( flTime ) { return [ 0, 0.50, 0.85, 1 ]; }
Tail.prototype.GetCurlynessValues_DefaultImpl_ = function( flTime ) { return [ 0, 2, 8, 9 ]; }
Tail.prototype.GetTailWidthPoints_DefaultImpl_ = function( flTime ) { return [ 0, 0.1, 0.8, 1 ]; }
Tail.prototype.GetTailWidthValues_DefaultImpl_ = function( flTime ) { return [ 45, 40, 25, 15 ]; }
Tail.prototype.GetFrantic_DefaultImpl_ = function( flTime, t ) { return .03 + t * ( .5 + .5 * Math.sin( .3 * flTime ) ) * .15; }
return Tail;
}));
// Utils
var CatUtils = {
GetTime: function() {
return ( new Date().getTime() / 1000 );
},
BIsInViewport: function ( Elem ) {
var nWindowWidth = window.innerWidth || document.documentElement.clientWidth;
var nWindowHeight = window.innerHeight || document.documentElement.clientHeight;
var rect = Elem.getBoundingClientRect();
// Returns true for an element which goes outside of the viewport but has some portion of itself within the viewport.
return rect.bottom >= 0 &&
rect.top <= nWindowHeight &&
rect.right >= 0 &&
rect.left <= nWindowWidth;
},
Clamp: function( v, min, max ) {
return Math.max( min, Math.min( max, v ) );
},
// Given the input t in the range [a,b], remap to [c,d], smoothly interpolating between c and d with a basic s-curve
Interpolate: function( t, a, b, c, d ) {
if ( a == b )
return t >= b ? d : c;
var u = CatUtils.Clamp( ( t - a ) / ( b - a ), 0, 1 );
return c + (d - c) * CatUtils.SCurve( u );
},
SCurve: function( t ) {
var tt = t * t;
return (3 * tt - 2 * tt * t );
},
DegreesToRadians: function( v ) {
return v * Math.PI / 180;
},
BinarySearch: function( t, rgValues ) {
var i = parseInt( rgValues.length / 2 );
while ( i >= 0 && i < rgValues.length )
{
if ( t >= rgValues[i] )
{
if ( t <= rgValues[i+1] )
break;
++i;
continue;
}
--i;
}
return i;
}
};
var SimplexNoise = (function( r ) {
var SimplexNoise = function() {
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0],
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1],
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]];
this.p = [];
for (var i=0; i<256; i++) {
this.p[i] = Math.floor(Math.random()*256);
}
// To remove the need for index wrapping, double the permutation table length
this.perm = [];
for(var i=0; i<512; i++) {
this.perm[i]=this.p[i & 255];
}
// A lookup table to traverse the simplex around a given point in 4D.
// Details can be found where this table is used, in the 4D noise method.
this.simplex = [
[0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0],
[0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0],
[1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0],
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],
[2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0],
[2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]];
};
SimplexNoise.prototype.dot = function(g, x, y) {
return g[0]*x + g[1]*y;
};
SimplexNoise.prototype.noise = function(xin, yin) {
var n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var F2 = 0.5*(Math.sqrt(3.0)-1.0);
var s = (xin+yin)*F2; // Hairy factor for 2D
var i = Math.floor(xin+s);
var j = Math.floor(yin+s);
var G2 = (3.0-Math.sqrt(3.0))/6.0;
var t = (i+j)*G2;
var X0 = i-t; // Unskew the cell origin back to (x,y) space
var Y0 = j-t;
var x0 = xin-X0; // The x,y distances from the cell origin
var y0 = yin-Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2;
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
var ii = i & 255;
var jj = j & 255;
var gi0 = this.perm[ii+this.perm[jj]] % 12;
var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12;
var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12;
// Calculate the contribution from the three corners
var t0 = 0.5 - x0*x0-y0*y0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1*x1-y1*y1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
}
var t2 = 0.5 - x2*x2-y2*y2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
};
// 3D simplex noise
SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
var n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
var F3 = 1.0/3.0;
var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
var i = Math.floor(xin+s);
var j = Math.floor(yin+s);
var k = Math.floor(zin+s);
var G3 = 1.0/6.0; // Very nice and simple unskew factor, too
var t = (i+j+k)*G3;
var X0 = i-t; // Unskew the cell origin back to (x,y,z) space
var Y0 = j-t;
var Z0 = k-t;
var x0 = xin-X0; // The x,y,z distances from the cell origin
var y0 = yin-Y0;
var z0 = zin-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
}
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
var y1 = y0 - j1 + G3;
var z1 = z0 - k1 + G3;
var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
var y2 = y0 - j2 + 2.0*G3;
var z2 = z0 - k2 + 2.0*G3;
var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
var y3 = y0 - 1.0 + 3.0*G3;
var z3 = z0 - 1.0 + 3.0*G3;
// Work out the hashed gradient indices of the four simplex corners
var ii = i & 255;
var jj = j & 255;
var kk = k & 255;
var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12;
var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12;
var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12;
var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12;
// Calculate the contribution from the four corners
var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0);
}
var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1);
}
var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2);
}
var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*(n0 + n1 + n2 + n3);
};
return SimplexNoise;
})();