-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeometry.py
382 lines (302 loc) · 11.7 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import math
from copy import copy
# Get normals to a polygon's sides
def get_polygon_normals(polygon):
normals = []
prevertex=polygon[0]
for vertex in polygon[1:]:
normal = Vector.fromTuple(prevertex-vertex).normal()
normal.normalize()
normals.append(normal)
prevertex=vertex
return normals
# Get the only normal for circle-polygon collision (from centre to the nearest point)
def _get_circle_to_polygon_normal(polygon, circle):
min_dist = polygon[0].dist(circle)
closest = polygon[0]
for dot in polygon[1:]:
dist = dot.dist(circle)
if(dist<min_dist):
closest=dot
min_dist=dist
normal = Vector.fromTuple(circle-closest)
normal.normalize()
return [normal]
# Dot product of two 2D vectors
def dot(vector, other):
return (vector.x*other.x+vector.y*other.y)
# Vector product (multiplied as 2x1 matrices)
def vec(vector, other):
return Vector(vector.x*other.x, vector.y*other.y)
# Cross product of vectors OA and OB.
def cross(o, a, b):
return (a.x-o.x)*(b.y-o.y) - (a.y-o.y)*(b.x-o.x)
# Project a polygon onto an axis
def _project_polygon(polygon, axis):
min_point = dot(polygon[0], axis)
max_point = min_point
for vertex in polygon:
current_point = dot(vertex, axis)
min_point = min(min_point, current_point)
max_point = max(max_point, current_point)
return (min_point, max_point)
def _project_circle(circle, axis):
center_point = dot(circle, axis)
min_point = center_point-circle.radius
max_point = center_point+circle.radius
return (min_point, max_point)
# Check if two projections overlap
def _overlap(proj1, proj2):
# ...1[0]....2[0]....1[1].....2[1] is when polygons overlap.
# Then, the signs of difference between each .[0] and .[1] are the same
d1 = proj1[0]-proj2[1]
d2 = proj2[0]-proj1[1]
return (d1*d2>0)
def check_collide_polygons(first, second, first_normals, second_normals):
normals = first_normals + second_normals
for normal in normals:
first_p = _project_polygon(first, normal)
second_p = _project_polygon(second, normal)
if(not _overlap(first_p, second_p)):
return False
return True
def check_collide_polygon_circle(polygon, circle, polygon_normals):
normals = polygon_normals + _get_circle_to_polygon_normal(polygon, circle)
for normal in normals:
polygon_p = _project_polygon(polygon, normal)
circle_p = _project_circle(circle, normal)
if(not _overlap(polygon_p, circle_p)):
return False
return True
# Non-SAT stuff starts here
# Convex hull of a set of points, stolen from Wikibooks ftw
def convex_hull(dots):
# Do nothing for non-polygons
if(len(dots)<3):
return dots
# Remove duplicates and sort as tuples
dots = sorted(set(dots), key=lambda a: (a.x, a.y))
upper_hull = []
lower_hull=[]
for dot in dots:
# If the angle is counter-clockwise, pop the outliers off
while(len(upper_hull) >=2 and cross(upper_hull[-2], upper_hull[-1], dot) <= 0):
upper_hull.pop()
upper_hull.append(dot)
for dot in reversed(dots):
# Ditto, but in opposite direction
while(len(lower_hull) >=2 and cross(lower_hull[-2], lower_hull[-1], dot) <= 0):
lower_hull.pop()
lower_hull.append(dot)
return lower_hull[:-1] + upper_hull[:-1]
def check_collide_rectangles(first, second):
return (((first.x>=second.x and first.x<=second.x+second.width) or #X1...x3...X2
(second.x>=first.x and second.x<=first.x+first.width)) and #x3...X1...x4
((first.y>=second.y and first.y<=second.y+second.height) or #Y1...y3...Y2
(second.y>=first.y and second.y<=first.y+first.height))) #y3...Y1...y4
def check_collide_circles(first, second):
return first.dist(second) <= first.radius+second.radius #O1O2 <= R1+R2
class Point:
def __init__(self, x, y):
super().__init__() # Needed for cooperative inheritance
self.x=x
self.y=y
@classmethod
def fromTuple(cls, coord_tuple):
return cls(*coord_tuple)
def dist(self, other):
return math.sqrt((self.x-other.x)*(self.x-other.x)+(self.y-other.y)*(self.y-other.y))
def __add__(self, other):
try:
return Point(self.x+other.x,
self.y+other.y)
except:
# If other has no (x,y), assume it's scalar
return Point(self.x+other, self.y+other)
def __iadd__(self, other):
try:
self.x += other.x
self.y += other.y
except AttributeError:
self.x += other
self.y += other
return self
def __sub__(self, other):
try:
return Point(self.x-other.x,
self.y-other.y)
except AttributeError:
# If other has no (x,y), assume it's scalar
return Point(self.x-other, self.y-other)
def __isub__(self, other):
try:
self.x -= other.x
self.y -= other.y
except:
self.x -= other
self.y -= other
return self
def __mul__(self, other):
try:
# If this type is a container, do matrix multiplication
return vec(self, other)
except AttributeError:
# Else, assume that other is scalar
return Point(self.x*other, self.y*other)
def __imul__(self, other):
self = self*other
return self
def __truediv__(self, other):
return Point(self.x/other, self.y/other)
def __itruediv__(self, other):
self.x/=other
self.y/=other
return self
def __iter__(self):
self.index=-1
return self
def __next__(self):
if(self.index<1):
self.index+=1
return self[self.index]
else:
raise StopIteration
def __getitem__(self, index):
if(index==0):
return self.x
elif(index==1):
return self.y
def __len__(self):
return 2
def __repr__(self):
return '({0},{1})'.format(self.x, self.y)
# Vector are the same as points, for the purposes of this
class Vector(Point):
def __init__(self, x, y):
super().__init__(x, y)
self._updateLength()
def __iadd__(self, other):
self=super().__iadd__(other)
self._updateLength()
return self
def __isub__(self, other):
self=super().__isub__(other)
self._updateLength()
return self
def __imul__(self, other):
self=super().__imul__(other)
self._updateLength()
return self
def __itruediv__(self, other):
self=super().__itruediv__(other)
self._updateLength()
return self
def _updateLength(self):
self.length = math.sqrt(self.x*self.x + self.y*self.y)
def isNullVector(self):
return self.x==0 and self.y==0
def shortenBy(self, vector):
self.x -= -vector.x if (self.x>0) != (vector.x>0) else vector.x
self.y -= -vector.y if (self.y>0) != (vector.y>0) else vector.y
self._updateLength()
def normal(self):
return Vector(self.y, -self.x)
def normalize(self):
if(self.length>0):
self /= self.length
self.length = 1
def normalized(self):
proxy=copy(self)
proxy.normalize()
return proxy
# Shapes will inherit from point, as they necessarily have a point-of-origin
class Rectangle(Point):
def __init__(self, origin, width, height):
super().__init__(*origin)
self.width=width
self.height=height
setTo = __init__
def contains(self, point):
return (self.x<=point.x) and (self.x+self.width>=point.x)\
and (self.y<=point.y) and (self.y+self.height>=point.y) #If X1...x...X2 and Y1...y...Y2.
def __repr__(self):
return 'Bottom-left @ {0} width={1} height={2}\n'.format(super().__repr__(), self.width, self.height)
class Circle(Point):
def __init__(self, origin, radius):
super().__init__(*origin)
self.radius = radius
def contains(self, point):
return (point.x-self.x)*(point.x-self.x)+(point.y-self.y)*(point.y-self.y) <= self.radius*self.radius # (x-m)^2+(y-n)^2 <= R^2
def __repr__(self):
return 'Center @ {0} radius={1}\n'.format(super().__repr__(), self.radius)
# Polygon will _not_ inherit from point: polygons have no origin
class Polygon:
def __init__(self, dots):
if(dots[0] != dots[-1]):
dots.append(copy(dots[0])) # Append first vertex to the end, making the polygon enclosed
self.dots = dots
self.normals = get_polygon_normals(self.dots)
# Determine if the point tested lies within the polygon.
# The algorithm is simple: for each two consecutive vertices of the polygon, we obtain
# the equation for the line that contains the segment delimited by these two points:
# (y-y1) (x-x1) (y-y1)
# ------- = -------; Then X = ------- * (x2-x1) + x1 is the equation for when X lies on the line.
# (y2-y1) (x2-x1) (y2-y1)
#
# Therefore, X <> ... signifies cases when the point lies off on the side with respect to the line.
# We consider all segments that have the examined point in their y-range. If the number of segments
# for which the point lies on the same side is even, the point lies within the polygon.
def contains(self, point):
# But first, check if bounding rect contains the point.
if(not self.bounds.contains(point)):
return False
prevertex = self.dots[-1]
inside = False
for vertex in self.dots:
if(((vertex.y>point.y) != (prevertex.y>point.y)) # Y1...y...Y2
and (point.x < (prevertex.x-vertex.x)*(point.y-vertex.y)/(prevertex.y-vertex.y) + vertex.x)):
inside = not inside
prevertex=vertex
return inside
@classmethod
def fromRectangle(cls, origin, width, height):
instance = cls([Point(origin.x, origin.y), Point(origin.x, origin.y+height),
Point(origin.x+width, origin.y+height), Point(origin.x+width, origin.y)])
instance.rectangle = True
instance.width = width
instance.height = height
instance.x, instance.y = instance.dots[0]
return instance
def updateFromRectangle(self):
try:
Polygon.__init__(self, [Point(self.x, self.y), Point(self.x, self.y+self.height),
Point(self.x+self.width, self.y+self.height), Point(self.x+self.width, self.y)])
except:
pass
@classmethod
def fromList(cls, lst):
return cls(list(map(Point.fromTuple, lst)))
def add_point(self, point):
self.dots.insert(len(self.dots)-1, point)
self.dots = convex_hull(self.dots)
self.dots.append(copy(self.dots[0]))
self.updateBounds()
self.normals = get_polygon_normals(self.dots)
def get_gl_vertices(self):
vertices = [coord for dot in self.dots for coord in dot] # Transform list of tuples into a flat list
vertices += [-1, -1] # Restart trigger for OpenGL. Repeated twice because vertex data has to be 2-aligned
return vertices
# We shift a polygon by translating each point thereof by the translation vector
def __iadd__(self, point):
for dot in self.dots:
dot += point
return self
def __isub__(self, point):
for dot in self.dots:
dot -= point
return self
def __repr__(self):
representation = '\n'
for dot in self.dots:
representation += dot.__repr__()+'\n'
return representation