forked from macanv/BERT-BiLSTM-CRF-NER
-
Notifications
You must be signed in to change notification settings - Fork 17
/
bert_lstm_ner.py
862 lines (743 loc) · 34.5 KB
/
bert_lstm_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
#! usr/bin/env python
# -*- coding:utf-8 -*-
"""
Copyright 2018 The Google AI Language Team Authors.
BASED ON Google_BERT.
reference from :zhoukaiyin/
@Author:Macan
@ModifiedBy:dsindex
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import json
from bert import modeling
from bert import optimization
from bert import tokenization
import tensorflow as tf
import codecs
from tensorflow.contrib.layers.python.layers import initializers
from tensorflow.contrib import crf
from tensorflow.contrib import rnn, cudnn_rnn
from tensorflow.contrib.tpu import TPUEstimator, TPUConfig
from tensorflow.python.ops import math_ops
import tf_metrics
import pickle
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string(
"data_dir", None,
"The input datadir. ex) 'NERdata'"
)
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. ex) 'bert_config.json'"
)
flags.DEFINE_string(
"task_name", None, "The name of the task to train. ex) 'NER'"
)
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written. ex) 'output'"
)
flags.DEFINE_string(
"init_checkpoint", "bert_model.ckpt",
"Initial checkpoint (usually from a pre-trained BERT model)."
)
flags.DEFINE_bool(
"do_lower_case", False,
"Whether to lower case the input text."
)
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization."
)
flags.DEFINE_bool(
"do_train", True,
"Whether to run training."
)
flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.")
flags.DEFINE_bool("do_predict", True, "Whether to run the model in inference mode on the test set.")
flags.DEFINE_bool("use_crf", True, "Whether to use CRF decoding.")
flags.DEFINE_integer("train_batch_size", 64, "Total batch size for training.")
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_float("bert_dropout_rate", 0.2,
"Proportion of dropout for bert embedding.")
flags.DEFINE_float("bilstm_dropout_rate", 0.2,
"Proportion of dropout for bilstm.")
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer("save_summary_steps", 100,
"Save summaries every this many steps")
flags.DEFINE_integer("keep_checkpoint_max", 20,
"The maximum number of recent checkpoint files to keep")
flags.DEFINE_integer("iterations_per_loop", 1000,
"How many steps to make in each estimator call.")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on. ex) 'vocab.txt'")
flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_string('data_config_path', 'data.conf',
'data config file, which save train and dev config')
flags.DEFINE_integer('lstm_size', 128, 'size of lstm units')
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text, pos, chunk, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
pos: string. The pos(part of speech) tag of the example.
chunk: string. The chunk tag of the example.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text = text
self.pos = pos
self.chunk = chunk
self.label = label
# untokenized data
self.tokens = text.split()
self.poss = pos.split()
self.chunks = chunk.split()
self.labels = []
if label: self.labels = label.split()
# tokenized data
self.tokenized_tokens = []
self.tokenized_poss = []
self.tokenized_chunks = []
self.tokenized_labels = []
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_ids, ):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
class NerProcessor(object):
"""A class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
return self._create_example(
self._read_data(os.path.join(data_dir, "train.txt")), "train"
)
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
return self._create_example(
self._read_data(os.path.join(data_dir, "dev.txt")), "dev"
)
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the test set."""
return self._create_example(
self._read_data(os.path.join(data_dir, "test.txt")), "test")
def get_labels(self):
"""Gets the list of labels for this data set."""
'''
return ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC", "X", "[CLS]", "[SEP]"]
'''
return ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC", "X"]
def _create_example(self, lines, set_type):
examples = []
for (i, line) in enumerate(lines): # line = (w, p, c, l)
guid = "%s-%s" % (set_type, i)
text = tokenization.convert_to_unicode(line[0])
pos = tokenization.convert_to_unicode(line[1])
chunk = tokenization.convert_to_unicode(line[2])
label = tokenization.convert_to_unicode(line[3])
examples.append(InputExample(guid=guid, text=text, pos=pos, chunk=chunk, label=label))
return examples
@classmethod
def _read_data(cls, input_file):
"""Reads a BIO data."""
with codecs.open(input_file, 'r', encoding='utf-8') as f:
lines = []
words = []
poss = []
chunks = []
labels = []
for line in f:
contents = line.strip()
if contents.startswith("-DOCSTART-"):
continue
if len(contents) == 0: # newline
if len(words) == 0: continue
assert(len(words) == len(poss))
assert(len(poss) == len(chunks))
assert(len(chunks) == len(labels))
w = ' '.join(words)
p = ' '.join(poss)
c = ' '.join(chunks)
l = ' '.join(labels)
lines.append([w, p, c, l])
words = []
poss = []
chunks = []
labels = []
continue
tokens = line.strip().split(' ')
assert(len(tokens) == 4)
word = tokens[0]
pos = tokens[1]
chunk = tokens[2]
label = tokens[-1]
words.append(word)
poss.append(pos)
chunks.append(chunk)
labels.append(label)
return lines
def convert_single_example_to_feature(ex_index, example, label_map, max_seq_length, tokenizer, mode):
textlist = example.tokens
poslist = example.poss
chunklist = example.chunks
labellist = example.labels
tokens = []
poss = []
chunks = []
labels = []
for i, word in enumerate(textlist):
token = tokenizer.tokenize(word)
tokens.extend(token)
pos_1 = poslist[i]
chunk_1 = chunklist[i]
label_1 = labellist[i]
for m in range(len(token)):
if m == 0:
poss.append(pos_1)
chunks.append(chunk_1)
labels.append(label_1)
else:
poss.append("X")
chunks.append("X")
labels.append("X")
# tokens = tokenizer.tokenize(example.text)
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)]
poss = poss[0:(max_seq_length - 2)]
chunks = chunks[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
# save tokens, poss, chunks, labels back to example
example.tokenized_tokens = tokens
example.tokenized_poss = poss
example.tokenized_chunks = chunks
example.tokenized_labels = labels
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]")
segment_ids.append(0)
#label_ids.append(label_map["[CLS]"])
label_ids.append(0)
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(label_map[labels[i]])
ntokens.append("[SEP]")
segment_ids.append(0)
#label_ids.append(label_map["[SEP]"])
label_ids.append(0)
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
# padding
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
# we don't concerned about it!
label_ids.append(0)
ntokens.append("**NULL**")
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
if ex_index < 5:
tf.logging.info("*** Example ***")
tf.logging.info("guid: %s" % (example.guid))
tf.logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
tf.logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
)
return feature
def convert_feature_to_tf_example(feature):
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
return tf_example
def filed_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_file, mode=None):
# build labe2id.pkl
label_map = {}
for (i, label) in enumerate(label_list, 1): # 0 index for '0' padding
label_map[label] = i
with codecs.open('./output/label2id.pkl', 'wb') as w:
pickle.dump(label_map, w)
# convert examples => features => tf_examples(tf.train.Example) => tf records(TFRecord, file)
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example_to_feature(ex_index, example, label_map, max_seq_length, tokenizer, mode)
tf_example = convert_feature_to_tf_example(feature)
writer.write(tf_example.SerializeToString())
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder
))
return d
return input_fn
def create_model(bert_config, is_training, input_ids, input_mask,
segment_ids, labels, num_labels, use_one_hot_embeddings):
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings
)
embedding = model.get_sequence_output() # (batch_size, seq_length, embedding_size)
'''
embedding_1 = model.get_all_encoder_layers()[-2]
embedding_2 = model.get_all_encoder_layers()[-1]
embedding = tf.concat([embedding_1, embedding_2], axis=-1)
'''
if is_training:
# dropout embedding
embedding = tf.layers.dropout(embedding, rate=FLAGS.bert_dropout_rate, training=is_training)
embedding_size = embedding.shape[-1].value # embedding_size
seq_length = embedding.shape[1].value
used = tf.sign(tf.abs(input_ids))
lengths = tf.reduce_sum(used, reduction_indices=1) # (batch_size)
print('seq_length', seq_length)
print('lengths', lengths)
def bi_lstm_fused(inputs, lengths, rnn_size, is_training, dropout_rate=0.5, scope='bi-lstm-fused'):
with tf.variable_scope(scope):
t = tf.transpose(inputs, perm=[1, 0, 2]) # Need time-major
lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(rnn_size)
lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(rnn_size)
lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw)
output_fw, _ = lstm_cell_fw(t, dtype=tf.float32, sequence_length=lengths)
output_bw, _ = lstm_cell_bw(t, dtype=tf.float32, sequence_length=lengths)
outputs = tf.concat([output_fw, output_bw], axis=-1)
outputs = tf.transpose(outputs, perm=[1, 0, 2])
return tf.layers.dropout(outputs, rate=dropout_rate, training=is_training)
def lstm_layer(inputs, lengths, is_training):
rnn_output = tf.identity(inputs)
for i in range(2):
scope = 'bi-lstm-fused-%s' % i
rnn_output = bi_lstm_fused(rnn_output,
lengths,
rnn_size=FLAGS.lstm_size,
is_training=is_training,
dropout_rate=FLAGS.bilstm_dropout_rate,
scope=scope) # (batch_size, seq_length, 2*rnn_size)
return rnn_output
def project_layer(inputs, out_dim, seq_length, scope='project'):
with tf.variable_scope(scope):
in_dim = inputs.get_shape().as_list()[-1]
weight = tf.get_variable('W', shape=[in_dim, out_dim],
dtype=tf.float32, initializer=initializers.xavier_initializer())
bias = tf.get_variable('b', shape=[out_dim], dtype=tf.float32,
initializer=tf.zeros_initializer())
t_output = tf.reshape(inputs, [-1, in_dim]) # (batch_size*seq_length, in_dim)
output = tf.matmul(t_output, weight) + bias # (batch_size*seq_length, out_dim)
output = tf.reshape(output, [-1, seq_length, out_dim]) # (batch_size, seq_length, out_dim)
return output
def loss_layer(logits, labels, num_labels, lengths, input_mask):
trans = tf.get_variable(
"transitions",
shape=[num_labels, num_labels],
initializer=initializers.xavier_initializer())
if FLAGS.use_crf:
with tf.variable_scope("crf-loss"):
log_likelihood, trans = tf.contrib.crf.crf_log_likelihood(
inputs=logits,
tag_indices=labels,
transition_params=trans,
sequence_lengths=lengths)
per_example_loss = -log_likelihood
loss = tf.reduce_mean(per_example_loss)
return loss, per_example_loss, trans
else:
labels_one_hot = tf.one_hot(labels, num_labels)
cross_entropy = labels_one_hot * tf.log(tf.nn.softmax(logits))
cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
cross_entropy *= tf.to_float(input_mask)
cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
cross_entropy /= tf.cast(lengths, tf.float32)
per_example_loss = cross_entropy
loss = tf.reduce_mean(per_example_loss)
return loss, per_example_loss, trans
'''
# 1
logits = project_layer(embedding, num_labels, seq_length, scope='project')
'''
'''
# 2
lstm_outputs = lstm_layer(embedding, lengths, is_training)
p1 = project_layer(lstm_outputs, FLAGS.lstm_size, seq_length, scope='project-1')
p2 = project_layer(p1, num_labels, seq_length, scope='project-2')
logits = p2
'''
# 3
lstm_outputs = lstm_layer(embedding, lengths, is_training)
logits = project_layer(lstm_outputs, num_labels, seq_length, scope='project')
loss, per_example_loss, trans = loss_layer(logits, labels, num_labels, lengths, input_mask)
if FLAGS.use_crf:
pred_ids, _ = crf.crf_decode(potentials=logits, transition_params=trans, sequence_length=lengths)
else:
probabilities = tf.nn.softmax(logits, axis=-1)
pred_ids = tf.argmax(probabilities,axis=-1)
# masking for confirmation
pred_ids *= input_mask
print('#' * 20)
print('shape of output_layer:', embedding.shape)
print('embedding_size:%d' % embedding_size)
print('seq_length:%d' % seq_length)
print('shape of logit', logits.shape)
print('shape of loss', loss.shape)
print('shape of per_example_loss', per_example_loss.shape)
print('num labels:%d' % num_labels)
print('#' * 20)
return (loss, per_example_loss, logits, trans, pred_ids)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, use_tpu,
use_one_hot_embeddings):
def model_fn(features, labels, mode, params):
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
print('shape of input_ids', input_ids.shape)
print('shape of label_ids', label_ids.shape)
# label_mask = features["label_mask"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
(total_loss, per_example_loss, logits, trans, pred_ids) = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, use_one_hot_embeddings)
print('shape of pred_ids', pred_ids.shape)
global_step = tf.train.get_or_create_global_step()
# add summary
tf.summary.scalar('loss', total_loss)
tvars = tf.trainable_variables()
scaffold_fn = None
if init_checkpoint and is_training:
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
if use_tpu:
def tpu_scaffold():
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
return tf.train.Scaffold()
scaffold_fn = tpu_scaffold
else:
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.PREDICT:
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
predictions=pred_ids,
scaffold_fn=scaffold_fn
)
else:
if mode == tf.estimator.ModeKeys.TRAIN:
'''
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
'''
lr = tf.train.exponential_decay(learning_rate, global_step, 5000, 0.9, staircase=True)
optimizer = tf.train.AdamOptimizer(lr)
grads, _ = tf.clip_by_global_norm(tf.gradients(total_loss, tvars), 1.5)
train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step)
logging_hook = tf.train.LoggingTensorHook({"batch_loss" : total_loss}, every_n_iter=10)
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
training_hooks = [logging_hook],
scaffold_fn=scaffold_fn)
else: # mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(label_ids, pred_ids, per_example_loss, input_mask):
# ['<pad>'] + ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "B-MISC", "I-MISC", "X"]
indices = [2, 3, 4, 5, 6, 7, 8, 9]
precision = tf_metrics.precision(label_ids, pred_ids, num_labels, indices, input_mask)
recall = tf_metrics.recall(label_ids, pred_ids, num_labels, indices, input_mask)
f = tf_metrics.f1(label_ids, pred_ids, num_labels, indices, input_mask)
accuracy = tf.metrics.accuracy(label_ids, pred_ids, input_mask)
loss = tf.metrics.mean(per_example_loss)
return {
'eval_precision': precision,
'eval_recall': recall,
'eval_f': f,
'eval_accuracy': accuracy,
'eval_loss': loss,
}
eval_metrics = (metric_fn, [label_ids, pred_ids, per_example_loss, input_mask])
output_spec = tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=total_loss,
eval_metrics=eval_metrics,
scaffold_fn=scaffold_fn)
return output_spec
return model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
processors = {
"ner": NerProcessor
}
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
tpu_cluster_resolver = None
if FLAGS.use_tpu and FLAGS.tpu_name:
tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
run_config = tf.contrib.tpu.RunConfig(
cluster=tpu_cluster_resolver,
master=FLAGS.master,
model_dir=FLAGS.output_dir,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
keep_checkpoint_max=FLAGS.keep_checkpoint_max,
save_summary_steps=FLAGS.save_summary_steps,
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=FLAGS.iterations_per_loop,
num_shards=FLAGS.num_tpu_cores,
per_host_input_for_training=is_per_host))
train_examples = None
num_train_steps = None
num_warmup_steps = None
if os.path.exists(FLAGS.data_config_path):
with codecs.open(FLAGS.data_config_path) as fd:
data_config = json.load(fd)
else:
data_config = {}
if FLAGS.do_train:
if len(data_config) == 0:
train_examples = processor.get_train_examples(FLAGS.data_dir)
num_train_steps = int((len(train_examples) / FLAGS.train_batch_size) * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
data_config['num_train_steps'] = num_train_steps
data_config['num_warmup_steps'] = num_warmup_steps
data_config['num_train_size'] = len(train_examples)
else:
num_train_steps = int(data_config['num_train_steps'])
num_warmup_steps = int(data_config['num_warmup_steps'])
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list) + 1, # 1 for '0' padding
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_tpu=FLAGS.use_tpu,
use_one_hot_embeddings=FLAGS.use_tpu)
estimator = tf.contrib.tpu.TPUEstimator(
use_tpu=FLAGS.use_tpu,
model_fn=model_fn,
config=run_config,
train_batch_size=FLAGS.train_batch_size,
eval_batch_size=FLAGS.eval_batch_size,
predict_batch_size=FLAGS.predict_batch_size)
if FLAGS.do_train:
# prepare train_input_fn
if data_config.get('train.tf_record_path', '') == '':
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
filed_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file)
else:
train_file = data_config.get('train.tf_record_path')
num_train_size = num_train_size = int(data_config['num_train_size'])
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", num_train_size)
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True)
# prepare eval_input_fn
if data_config.get('eval.tf_record_path', '') == '':
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
filed_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file)
data_config['eval.tf_record_path'] = eval_file
data_config['num_eval_size'] = len(eval_examples)
else:
eval_file = data_config['eval.tf_record_path']
num_eval_size = data_config.get('num_eval_size', 0)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d", num_eval_size)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
eval_steps = None
if FLAGS.use_tpu:
eval_steps = int(num_eval_size / FLAGS.eval_batch_size)
eval_drop_remainder = True if FLAGS.use_tpu else False
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder)
# train and evaluate
hook = tf.contrib.estimator.stop_if_no_decrease_hook(
estimator, 'eval_f', 3000, min_steps=30000, run_every_secs=120)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps, hooks=[hook])
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, throttle_secs=120)
tp = tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
result = tp[0]
output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
with codecs.open(output_eval_file, "w", encoding='utf-8') as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if not os.path.exists(FLAGS.data_config_path):
with codecs.open(FLAGS.data_config_path, 'a', encoding='utf-8') as fd:
json.dump(data_config, fd)
if FLAGS.do_predict:
# prepare predict_input_fn
predict_examples = processor.get_test_examples(FLAGS.data_dir)
predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
filed_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_length, tokenizer,
predict_file, mode="test")
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d", len(predict_examples))
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
if FLAGS.use_tpu:
# Warning: According to tpu_estimator.py Prediction on TPU is an
# experimental feature and hence not supported here
raise ValueError("Prediction in TPU not supported")
predict_drop_remainder = True if FLAGS.use_tpu else False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder)
# predict
predict_steps = None
if FLAGS.use_tpu:
predict_steps = int(len(predict_examples) / FLAGS.eval_batch_size)
predicted_result = estimator.evaluate(input_fn=predict_input_fn, steps=predict_steps)
output_eval_file = os.path.join(FLAGS.output_dir, "predicted_results.txt")
with codecs.open(output_eval_file, "w", encoding='utf-8') as writer:
tf.logging.info("***** Predict results *****")
for key in sorted(predicted_result.keys()):
tf.logging.info(" %s = %s", key, str(predicted_result[key]))
writer.write("%s = %s\n" % (key, str(predicted_result[key])))
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = os.path.join(FLAGS.output_dir, "pred.txt")
print('*' * 20)
print('type of result:%s, type of predict_examples:%s' % (type(result), type(predict_examples)))
print('*' * 20)
with codecs.open('./output/label2id.pkl', 'rb') as rf:
label2id = pickle.load(rf)
id2label = {value: key for key, value in label2id.items()}
with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
for predict_example, prediction in zip(predict_examples, result):
tokens = predict_example.tokens
poss = predict_example.poss
chunks = predict_example.chunks
labels = predict_example.labels
tokenized_tokens = predict_example.tokenized_tokens
tokenized_poss = predict_example.tokenized_poss
tokenized_chunks = predict_example.tokenized_chunks
tokenized_labels = predict_example.tokenized_labels
text = predict_example.text
length = len(tokenized_tokens)
seq = 0
for token, pos, label, p_id in zip(tokenized_tokens, tokenized_poss, tokenized_labels, prediction[1:length+1]):
p_label = 'O'
if p_id != 0: p_label = id2label[p_id]
if p_label == 'X': p_label = 'O'
if label == 'X': continue
org_token = tokens[seq]
org_pos = poss[seq]
org_chunk = chunks[seq]
org_label = labels[seq]
output_line = ' '.join([org_token, org_pos, org_chunk, org_label, p_label])
writer.write(output_line + '\n')
seq += 1
writer.write('\n')
def data_load():
processer = NerProcessor()
processer.get_labels()
processer.get_train_examples(FLAGS.data_dir)
print()
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("output_dir")
tf.app.run()