forked from NirDiamant/RAG_Techniques
-
Notifications
You must be signed in to change notification settings - Fork 0
/
query_transformations.py
140 lines (107 loc) · 5.36 KB
/
query_transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
# Load environment variables from a .env file
load_dotenv()
# Set the OpenAI API key environment variable
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
# Function for rewriting a query to improve retrieval
def rewrite_query(original_query, llm_chain):
"""
Rewrite the original query to improve retrieval.
Args:
original_query (str): The original user query
llm_chain: The chain used to generate the rewritten query
Returns:
str: The rewritten query
"""
response = llm_chain.invoke(original_query)
return response.content
# Function for generating a step-back query to retrieve broader context
def generate_step_back_query(original_query, llm_chain):
"""
Generate a step-back query to retrieve broader context.
Args:
original_query (str): The original user query
llm_chain: The chain used to generate the step-back query
Returns:
str: The step-back query
"""
response = llm_chain.invoke(original_query)
return response.content
# Function for decomposing a query into simpler sub-queries
def decompose_query(original_query, llm_chain):
"""
Decompose the original query into simpler sub-queries.
Args:
original_query (str): The original complex query
llm_chain: The chain used to generate sub-queries
Returns:
List[str]: A list of simpler sub-queries
"""
response = llm_chain.invoke(original_query).content
sub_queries = [q.strip() for q in response.split('\n') if q.strip() and not q.strip().startswith('Sub-queries:')]
return sub_queries
# Main class for the RAG method
class RAGQueryProcessor:
def __init__(self):
# Initialize LLM models
self.re_write_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000)
self.step_back_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000)
self.sub_query_llm = ChatOpenAI(temperature=0, model_name="gpt-4o", max_tokens=4000)
# Initialize prompt templates
query_rewrite_template = """You are an AI assistant tasked with reformulating user queries to improve retrieval in a RAG system.
Given the original query, rewrite it to be more specific, detailed, and likely to retrieve relevant information.
Original query: {original_query}
Rewritten query:"""
step_back_template = """You are an AI assistant tasked with generating broader, more general queries to improve context retrieval in a RAG system.
Given the original query, generate a step-back query that is more general and can help retrieve relevant background information.
Original query: {original_query}
Step-back query:"""
subquery_decomposition_template = """You are an AI assistant tasked with breaking down complex queries into simpler sub-queries for a RAG system.
Given the original query, decompose it into 2-4 simpler sub-queries that, when answered together, would provide a comprehensive response to the original query.
Original query: {original_query}
example: What are the impacts of climate change on the environment?
Sub-queries:
1. What are the impacts of climate change on biodiversity?
2. How does climate change affect the oceans?
3. What are the effects of climate change on agriculture?
4. What are the impacts of climate change on human health?"""
# Create LLMChains
self.query_rewriter = PromptTemplate(input_variables=["original_query"],
template=query_rewrite_template) | self.re_write_llm
self.step_back_chain = PromptTemplate(input_variables=["original_query"],
template=step_back_template) | self.step_back_llm
self.subquery_decomposer_chain = PromptTemplate(input_variables=["original_query"],
template=subquery_decomposition_template) | self.sub_query_llm
def run(self, original_query):
"""
Run the full RAG query processing pipeline.
Args:
original_query (str): The original query to be processed
"""
# Rewrite the query
rewritten_query = rewrite_query(original_query, self.query_rewriter)
print("Original query:", original_query)
print("\nRewritten query:", rewritten_query)
# Generate step-back query
step_back_query = generate_step_back_query(original_query, self.step_back_chain)
print("\nStep-back query:", step_back_query)
# Decompose the query into sub-queries
sub_queries = decompose_query(original_query, self.subquery_decomposer_chain)
print("\nSub-queries:")
for i, sub_query in enumerate(sub_queries, 1):
print(f"{i}. {sub_query}")
# Argument parsing
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Process a query using the RAG method.")
parser.add_argument("--query", type=str, default='What are the impacts of climate change on the environment?',
help="The original query to be processed")
return parser.parse_args()
# Main execution
if __name__ == "__main__":
args = parse_args()
processor = RAGQueryProcessor()
processor.run(args.query)