forked from yl4579/StyleTTS2
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
334 lines (277 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# load packages
import random
import yaml
import time
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
import click
import shutil
import traceback
import warnings
import logging
from logging import StreamHandler
warnings.simplefilter("ignore")
from torch.utils.tensorboard import SummaryWriter
from meldataset import build_dataloader, BatchManager
from Utils.ASR.models import ASRCNN
from Utils.JDC.model import JDCNet
from Utils.PLBERT.util import load_plbert
from models import *
from losses import *
from utils import *
from Modules.slmadv import SLMAdversarialLoss
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
from optimizers import build_optimizer
from stages import train_first, validate_first, train_second, validate_second
# simple fix for dataparallel that allows access to class attributes
class MyDataParallel(torch.nn.DataParallel):
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.module, name)
class TrainContext:
def __init__(self):
pass
train = TrainContext()
@click.command()
@click.option("-p", "--config_path", default="Configs/config.yml", type=str)
@click.option("--probe_batch", default=None, type=int)
@click.option("--early_joint/--no_early_joint", default=False, type=bool)
@click.option("--stage", default="auto", type=str)
def main(config_path, probe_batch, early_joint, stage):
train.config_path = config_path
train.config = yaml.safe_load(open(config_path))
train.early_joint = early_joint
train.stage = stage
train.log_dir = train.config["log_dir"]
if not osp.exists(train.log_dir):
os.makedirs(train.log_dir, exist_ok=True)
if not osp.exists(train.log_dir):
exit("Failed to create or find log directory.")
shutil.copy(config_path, osp.join(train.log_dir, osp.basename(config_path)))
train.writer = SummaryWriter(train.log_dir + "/tensorboard")
train.logger = logging.getLogger(__name__)
train.logger.setLevel(logging.DEBUG)
handler = StreamHandler()
handler.setLevel(logging.DEBUG)
train.logger.addHandler(handler)
file_handler = logging.FileHandler(osp.join(train.log_dir, "train.log"))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(
logging.Formatter("%(levelname)s:%(asctime)s: %(message)s")
)
train.logger.addHandler(file_handler)
train.epochs = train.config.get("epochs_2nd", 200)
train.save_freq = train.config.get("save_freq", 2)
train.log_interval = train.config.get("log_interval", 10)
train.saving_epoch = train.config.get("save_freq", 2)
train.sr = train.config["preprocess_params"].get("sr", 24000)
train.loss_params = Munch(train.config["loss_params"])
train.diff_epoch = train.loss_params.diff_epoch
train.joint_epoch = train.loss_params.joint_epoch
train.TMA_epoch = train.loss_params.TMA_epoch
if "skip_downsamples" not in train.config["model_params"]:
train.config["model_params"]["skip_downsamples"] = False
train.model_params = recursive_munch(train.config["model_params"])
train.multispeaker = train.model_params.multispeaker
train.device = "cuda"
# Set up data loaders and batch manager
data_params = train.config.get("data_params", None)
train_path = data_params["train_data"]
val_path = data_params["val_data"]
root_path = data_params["root_path"]
min_length = data_params["min_length"]
OOD_data = data_params["OOD_data"]
if not osp.exists(train_path):
exit(f"Train data not found at {train_path}")
if not osp.exists(val_path):
exit(f"Validation data not found at {val_path}")
if not osp.exists(root_path):
exit("Root path not found at {root_path}")
val_list = get_data_path_list(val_path)
train.val_dataloader = build_dataloader(
val_list,
root_path,
OOD_data=OOD_data,
min_length=min_length,
batch_size={},
validation=True,
num_workers=4,
device=train.device,
dataset_config={},
multispeaker=train.multispeaker,
)
def log_print_function(s):
train.logger.info(s)
train.batch_manager = BatchManager(
train_path,
train.log_dir,
probe_batch=probe_batch,
root_path=root_path,
OOD_data=OOD_data,
min_length=min_length,
device=train.device,
accelerator=None,
log_print=log_print_function,
multispeaker=train.multispeaker,
)
# load pretrained ASR model
ASR_config = train.config.get("ASR_config", False)
ASR_path = train.config.get("ASR_path", False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = train.config.get("F0_path", False)
pitch_extractor = load_F0_models(F0_path)
# load PL-BERT model
BERT_path = train.config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)
# build model
train.model = build_model(train.model_params, text_aligner, pitch_extractor, plbert)
_ = [train.model[key].to(train.device) for key in train.model]
# DP
for key in train.model:
if key != "mpd" and key != "msd" and key != "wd":
train.model[key] = MyDataParallel(train.model[key])
start_epoch = 1
train.iters = 0
load_pretrained = train.config.get(
"pretrained_model", ""
) != "" and train.config.get("second_stage_load_pretrained", False)
if not load_pretrained:
if train.config.get("first_stage_path", "") != "":
first_stage_path = osp.join(
train.log_dir, train.config.get("first_stage_path", "first_stage.pth")
)
print("Loading the first stage model at %s ..." % first_stage_path)
train.model, _, start_epoch, train.iters = load_checkpoint(
train.model,
None,
first_stage_path,
load_only_params=True,
ignore_modules=[
"bert",
"bert_encoder",
"predictor",
"predictor_encoder",
"msd",
"mpd",
"wd",
"diffusion",
],
) # keep starting epoch for tensorboard log
# these epochs should be counted from the start epoch
# diff_epoch += start_epoch
# joint_epoch += start_epoch
# epochs += start_epoch
start_epoch = 1
train.model.predictor_encoder = copy.deepcopy(train.model.style_encoder)
else:
start_epoch = 1
train.iters = 0
# raise ValueError("You need to specify the path to the first stage model.")
train.gl = GeneratorLoss(train.model.mpd, train.model.msd).to(train.device)
train.dl = DiscriminatorLoss(train.model.mpd, train.model.msd).to(train.device)
train.wl = WavLMLoss(
train.model_params.slm.model,
train.model.wd,
train.sr,
train.model_params.slm.sr,
).to(train.device)
train.gl = MyDataParallel(train.gl)
train.dl = MyDataParallel(train.dl)
train.wl = MyDataParallel(train.wl)
train.sampler = DiffusionSampler(
train.model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(
sigma_min=0.0001, sigma_max=3.0, rho=9.0
), # empirical parameters
clamp=False,
)
optimizer_params = Munch(train.config["optimizer_params"])
scheduler_params = {
"max_lr": optimizer_params.lr,
"pct_start": float(0),
"epochs": train.epochs,
"steps_per_epoch": train.batch_manager.get_step_count(),
}
scheduler_params_dict = {key: scheduler_params.copy() for key in train.model}
scheduler_params_dict["bert"]["max_lr"] = optimizer_params.bert_lr * 2
scheduler_params_dict["decoder"]["max_lr"] = optimizer_params.ft_lr * 2
scheduler_params_dict["style_encoder"]["max_lr"] = optimizer_params.ft_lr * 2
train.optimizer = build_optimizer(
{key: train.model[key].parameters() for key in train.model},
scheduler_params_dict=scheduler_params_dict,
lr=optimizer_params.lr,
)
# adjust BERT learning rate
for g in train.optimizer.optimizers["bert"].param_groups:
g["betas"] = (0.9, 0.99)
g["lr"] = optimizer_params.bert_lr
g["initial_lr"] = optimizer_params.bert_lr
g["min_lr"] = 0
g["weight_decay"] = 0.01
# adjust acoustic module learning rate
for module in ["decoder", "style_encoder"]:
for g in train.optimizer.optimizers[module].param_groups:
g["betas"] = (0.0, 0.99)
g["lr"] = optimizer_params.ft_lr
g["initial_lr"] = optimizer_params.ft_lr
g["min_lr"] = 0
g["weight_decay"] = 1e-4
# load models if there is a model
if load_pretrained:
train.model, train.optimizer, start_epoch, train.iters = load_checkpoint(
train.model,
train.optimizer,
train.config["pretrained_model"],
load_only_params=train.config.get("load_only_params", True),
)
start_epoch += 1
train.n_down = train.model.text_aligner.n_down
train.best_loss = float("inf") # best test loss
torch.cuda.empty_cache()
train.stft_loss = MultiResolutionSTFTLoss().to(train.device)
# print("BERT", optimizer.optimizers["bert"])
# print("decoder", optimizer.optimizers["decoder"])
train.start_ds = False
# TODO: This value is calculated inconsistently based on whether checkpoints are loaded/saved
train.running_std = []
train.slmadv_params = Munch(train.config["slmadv_params"])
train.slmadv = SLMAdversarialLoss(
train.model,
train.wl,
train.sampler,
train.slmadv_params.min_len,
train.slmadv_params.max_len,
batch_percentage=train.slmadv_params.batch_percentage,
skip_update=train.slmadv_params.iter,
sig=train.slmadv_params.sig,
)
train_val_loop(train, start_epoch)
def train_val_loop(train, start_epoch):
if train.stage == "first":
train_batch = train_first
validate = validate_first
elif train.stage == "second":
train_batch = train_second
validate = validate_second
else:
exit("Invalid training stage. --stage must be 'first' or 'second'")
for epoch in range(start_epoch, train.epochs):
train.running_loss = 0
train.start_time = time.time()
if epoch >= train.diff_epoch or train.early_joint:
train.start_ds = True
_ = [train.model[key].train() for key in train.model]
train.batch_manager.epoch_loop(epoch, train_batch, train=train)
_ = [train.model[key].eval() for key in train.model]
validate(epoch, 1, True, train)
if __name__ == "__main__":
main()