-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test_spsr.py
83 lines (67 loc) · 3.25 KB
/
main_test_spsr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
from torch.utils.data import DataLoader
from data.select_datasets import select_data
from models import *
from utils import *
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default='options/test/x4/test_braint_spsr_release_s4_d32_w5_n1.json')
# parser.add_argument('--opt', type=str, default='options/test/x4/test_ixit_spsr_release_s4_d32_w5_n1.json')
parser.add_argument('-d', '--device', type=str, default='cuda:0')
args = parser.parse_args()
with open(args.opt, 'r', encoding='utf-8') as f:
json_str = f.read()
opt = json.loads(json_str, object_pairs_hook=OrderedDict)
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device = args.device
# set up model
if os.path.exists(opt['path']['pretrained_netG']):
print('loading model from {}'.format(opt['path']['pretrained_netG']))
logger = get_logger('test', os.path.join(os.path.dirname(opt['path']['pretrained_netG']), '..', 'test.log'))
logger.info(opt)
model = select_G(opt)
pretrained_model = torch.load(opt['path']['pretrained_netG'], map_location=device)
model.load_state_dict(pretrained_model, strict=True)
model = model.to(device)
opt['datasets']['test']['scale'] = opt['scale']
opt['datasets']['test']['n_channels'] = opt['n_channels']
opt['datasets']['test']['img_size'] = opt['netG']['img_size']
opt['datasets']['test']['maxn'] = opt['maxn']
opt['datasets']['test']['minn'] = opt['minn']
opt['datasets']['test']['phase'] = 'test'
seed = 3407
print('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
test_set = select_data(opt['datasets']['test'])
test_loader = DataLoader(test_set, batch_size=1, shuffle=False, num_workers=1, drop_last=False, pin_memory=True)
avg_psnr = []
avg_ssim = []
n_channels = 1
minn = opt['minn']
model.eval()
for idx, data in enumerate(test_loader):
# read image
image_name_ext = os.path.basename(data['path'][0]).replace('PD', 'T2').replace('T1', 'T2')
result = []
maxn = min(data['L'][0].shape[1], opt['maxn'])
for j in range(minn, maxn, n_channels):
with torch.no_grad():
lr = data['L'][0][:, j:min(j + n_channels, maxn), :, :].float().to(device)
ref = data['L'][1][:, j:min(j + n_channels, maxn), :, :].float().to(device)
E_img = model([lr, ref])[0]
# E_img = F.interpolate(lr, size=(240, 240))
E_img = tensor2single(E_img)
# E_img = E_img.squeeze().float().cpu().numpy()
result.append(E_img)
result = np.array(result)
current_psnr = psnr(result, data['H'][0].squeeze().cpu().numpy()[minn:maxn])
current_ssim = ssim(result, data['H'][0].squeeze().cpu().numpy()[minn:maxn])
logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB {:<4.4f}'.format(idx, image_name_ext, current_psnr, current_ssim))
avg_psnr.append(current_psnr)
avg_ssim.append(current_ssim)
logger.info('-- Average PSNR/SSIM: {:.4f} dB|{:.4f}'.format(np.mean(avg_psnr), np.mean(avg_ssim)))
if __name__ == '__main__':
main()