-
Notifications
You must be signed in to change notification settings - Fork 7
/
main.py
507 lines (445 loc) · 23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import argparse
import random
import time
import warnings
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models
from losses import DROLoss
from ClassAwareSampler import ClassAwareSampler
from utils import *
from imbalance_cifar import IMBALANCECIFAR10, IMBALANCECIFAR100
import pickle
from sklearn.utils import class_weight
from autoaugment import CIFAR10Policy, Cutout
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch Cifar Training')
parser.add_argument('--dataset', default='cifar10', help='dataset setting')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet32',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet32)')
parser.add_argument('--loss_type', default="CE", type=str, help='loss type')
parser.add_argument('--imb_type', default="exp", type=str, help='imbalance type')
parser.add_argument('--imb_factor', default=0.01, type=float, help='imbalance factor')
parser.add_argument('--train_rule', default='None', type=str, help='data sampling strategy for train loader')
parser.add_argument('--rand_number', default=0, type=int, help='fix random number for data sampling')
parser.add_argument('--exp_str', default='0', type=str, help='number to indicate which experiment it is')
parser.add_argument('-j', '--workers', default=20, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N',
help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--root_log', type=str, default='checkpoint')
parser.add_argument('--root_model', type=str, default='checkpoint')
parser.add_argument('--pretrained', type=str, default=None)
parser.add_argument('--feat_loss', type=str, default=None)
parser.add_argument('--feat_sampler', type=str, default=None)
parser.add_argument('--feat_lr', type=float, default=0.01)
parser.add_argument('--cls_loss', type=str, default=None)
parser.add_argument('--cls_sampler', type=str, default=None)
parser.add_argument('--cls_lr', type=float, default=0.01)
parser.add_argument('--evaluation', type=bool, default=False)
parser.add_argument('--temperature', type=float, default=0.07)
parser.add_argument('--margin', type=float, default=0.1)
parser.add_argument('--margin_type', type=str, choices=['learned'], default="learned")
parser.add_argument('--balanced_clf_nepochs', default=20, type=int)
best_acc1 = 0
def freeze_layers(model, fe_bool=True, cls_bool=True):
if fe_bool:
model.train()
else:
model.eval()
if cls_bool:
model.linear.train()
else:
model.linear.eval()
for name, params in model.named_parameters():
if "linear" in name:
# classifier layers
params.requires_grad = cls_bool
else:
# feature extractor layers
params.requires_grad = fe_bool
def main():
args = parser.parse_args()
if args.pretrained:
folder_name = f"robust_nepochs={args.epochs}_bs={args.batch_size}_temp={args.temperature}_margin={args.margin}_type={args.margin_type}_" \
f"feat-{args.feat_loss}-{args.feat_sampler}-{args.feat_lr}_" \
f"cls-{args.cls_loss}-{args.cls_sampler}-{args.cls_lr}"
args.store_name = os.path.join(args.pretrained, folder_name)
else:
args.store_name = '_'.join(
[args.dataset, args.arch, args.loss_type, args.train_rule, args.imb_type, str(args.imb_factor),
args.exp_str])
prepare_folders(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = torch.cuda.device_count()
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model
print("=> creating model '{}'".format(args.arch))
num_classes = 100 if args.dataset == 'cifar100' else 10
use_norm = True if args.loss_type == 'LDAM' else False
model = models.__dict__[args.arch](num_classes=num_classes, use_norm=use_norm)
# create two optimizers - one for feature extractor and one for classifier
feat_params = []
feat_params_names = []
cls_params = []
cls_params_names = []
learnable_epsilons = torch.nn.Parameter(torch.ones(num_classes))
for name, params in model.named_parameters():
if params.requires_grad:
if "linear" in name:
cls_params_names += [name]
cls_params += [params]
else:
feat_params_names += [name]
feat_params += [params]
print("Create Feat Optimizer")
print(f"\tRequires Grad:{feat_params_names}")
feat_optim = torch.optim.SGD(feat_params + [learnable_epsilons], args.feat_lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
print("Create Feat Optimizer")
print(f"\tRequires Grad:{cls_params_names}")
cls_optim = torch.optim.SGD(cls_params, args.cls_lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume or args.evaluation:
curr_store_name = args.store_name
if not args.evaluation and args.pretrained:
curr_store_name = os.path.join(curr_store_name, os.path.pardir)
filename = '%s/%s/ckpt.best.pth.tar' % (args.root_model, curr_store_name)
if os.path.isfile(filename):
print("=> loading checkpoint '{}'".format(filename))
checkpoint = torch.load(filename, map_location=f"cuda:{args.gpu}")
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(filename, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(filename))
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
# Data loading code=
transform_train = transforms.Compose(
[transforms.RandomCrop(32, padding=4), # fill parameter needs torchvision installed from source
transforms.RandomHorizontalFlip(),
CIFAR10Policy(),
transforms.ToTensor(),
Cutout(n_holes=1, length=16), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.dataset == 'cifar10':
original_train_dataset = IMBALANCECIFAR10(root='./data', imb_type=args.imb_type, imb_factor=args.imb_factor,
rand_number=args.rand_number, train=True, download=True,
transform=transform_val)
augmented_train_dataset = IMBALANCECIFAR10(root='./data', imb_type=args.imb_type, imb_factor=args.imb_factor,
rand_number=args.rand_number, train=True, download=True,
transform=transform_train if not args.evaluation else transform_val)
val_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_val)
elif args.dataset == 'cifar100':
original_train_dataset = IMBALANCECIFAR100(root='./data', imb_type=args.imb_type, imb_factor=args.imb_factor,
rand_number=args.rand_number, train=True, download=True,
transform=transform_val)
augmented_train_dataset = IMBALANCECIFAR100(root='./data', imb_type=args.imb_type, imb_factor=args.imb_factor,
rand_number=args.rand_number, train=True, download=True,
transform=transform_train if not args.evaluation else transform_val)
val_dataset = datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_val)
else:
warnings.warn('Dataset is not listed')
return
cls_num_list = augmented_train_dataset.get_cls_num_list()
args.cls_num_list = cls_num_list
train_labels = np.array(augmented_train_dataset.get_targets()).astype(int)
# calculate balanced weights
balanced_weights = torch.tensor(class_weight.compute_class_weight('balanced',
np.unique(train_labels),
train_labels), dtype=torch.float).cuda(args.gpu)
lt_weights = torch.tensor(cls_num_list).float() / max(cls_num_list)
def create_sampler(args_str):
if args_str is not None and "resample" in args_str:
sampler_type, n_resample = args_str.split(",")
return ClassAwareSampler(train_labels, num_samples_cls=int(n_resample))
return None
original_train_loader = torch.utils.data.DataLoader(
original_train_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=100, shuffle=False,
num_workers=args.workers, pin_memory=True)
# feature extractor dataloader
feat_sampler = create_sampler(args.feat_sampler)
feat_train_loader = torch.utils.data.DataLoader(
augmented_train_dataset, batch_size=args.batch_size, shuffle=(feat_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=feat_sampler)
if args.evaluation:
# evaluate on validation set
# calculate centroids on the train
_, train_features, train_targets, _ = validate(original_train_loader, model, 0, args, train_labels,
flag="train", save_out=True)
# validate
validate(val_loader, model, 0, args, train_labels,
flag="val", save_out=True, base_features=train_features, base_targets=train_targets)
quit()
# create losses
def create_loss_list(args_str):
loss_ls = []
loss_str_ls = args_str.split(",")
for loss_str in loss_str_ls:
c_weights = None
prefix = ""
if "_bal" in loss_str:
c_weights = balanced_weights
prefix = "Balanced "
loss_str = loss_str.split("_bal")[0]
if "_lt" in loss_str:
c_weights = lt_weights
prefix = "Longtailed "
loss_str = loss_str.split("_")[0]
if loss_str == "ce":
print(f"{prefix}CE", end=",")
loss_ls += [nn.CrossEntropyLoss(weight=c_weights).cuda(args.gpu)]
elif loss_str == "robust_loss":
print(f"{prefix}Robust Loss", end=",")
loss_ls += [DROLoss(temperature=args.temperature,
base_temperature=args.temperature,
class_weights=c_weights,
epsilons=learnable_epsilons)]
print()
return loss_ls
feat_losses = create_loss_list(args.feat_loss)
cls_losses = create_loss_list(args.cls_loss)
# init log for training
if not args.evaluation:
log_training = open(os.path.join(args.root_log, args.store_name, 'log_train.csv'), 'w')
log_testing = open(os.path.join(args.root_log, args.store_name, 'log_test.csv'), 'w')
with open(os.path.join(args.root_log, args.store_name, 'args.txt'), 'w') as f:
f.write(str(args))
tf_writer = None
best_acc1 = 0
best_acc_contrastive = 0
for epoch in range(args.start_epoch, args.epochs):
print("=============== Extract Train Centroids ===============")
_, train_features, train_targets, _ = validate(feat_train_loader, model, epoch, args,
train_labels, log_training, tf_writer, flag="train",
verbose=True)
if epoch < args.epochs - args.balanced_clf_nepochs:
print("=============== Train Feature Extractor ===============")
freeze_layers(model, fe_bool=True, cls_bool=False)
train(feat_train_loader, model, feat_losses, epoch, feat_optim, args, train_features, train_targets)
else:
if epoch == args.epochs - args.balanced_clf_nepochs:
print("================ Loading Best Feature Extractor =================")
# load best model
curr_store_name = args.store_name
filename = '%s/%s/ckpt.best.pth.tar' % (args.root_model, curr_store_name)
checkpoint = torch.load(filename, map_location=f"cuda:{args.gpu}")['state_dict']
model.load_state_dict(checkpoint)
print("=============== Train Classifier ===============")
freeze_layers(model, fe_bool=False, cls_bool=True)
train(feat_train_loader, model, cls_losses, epoch, cls_optim, args)
print("=============== Extract Train Centroids ===============")
_, train_features, train_targets, _ = validate(original_train_loader, model, epoch, args,
train_labels, log_training, tf_writer, flag="train",
verbose=False)
print("=============== Validate ===============")
acc1, _, _, contrastive_acc = validate(val_loader, model, epoch, args,
train_labels, log_testing, tf_writer, flag="val",
base_features=train_features,
base_targets=train_targets)
if epoch < args.epochs - args.balanced_clf_nepochs:
is_best = contrastive_acc > best_acc_contrastive
best_acc_contrastive = max(contrastive_acc, best_acc_contrastive)
else:
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
print(f"Best Contrastive Acc: {best_acc_contrastive}, Best Cls Acc: {best_acc1}")
log_testing.write(f"Best Contrastive Acc: {best_acc_contrastive}, Best Cls Acc: {best_acc1}")
log_testing.flush()
save_checkpoint(args, {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1
}, is_best)
def train(trainval_loader, model, losses, epoch, optimizer, args, base_features=None, base_targets=None):
avg_meters = [(type(l).__name__, AverageMeter('Loss', ':.4e')) for l in losses]
for i, (input, target) in enumerate(trainval_loader):
# compute gradient and do SGD step
optimizer.zero_grad()
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
feats, output = model(input)
loss = 0
for idx, loss_func in enumerate(losses):
if type(loss_func) == nn.CrossEntropyLoss:
l = loss_func(output, target)
elif type(loss_func) == DROLoss:
l = loss_func(feats, target, base_features, base_targets)
else:
print("Loss not found")
quit()
avg_meters[idx][1].update(l.item(), input.size(0))
loss += l
loss.backward()
optimizer.step()
if i % args.print_freq == 0:
output = f'Epoch: [{epoch}][{i}/{len(trainval_loader)}], lr: {optimizer.param_groups[-1]["lr"]:.8f}\t'
for t, avg_meter in avg_meters:
output += f'{t} {avg_meter.val:.4f} ({avg_meter.avg:.4f})\t'
print(output)
if torch.isnan(loss):
quit()
def validate(val_loader, model, epoch, args,
train_labels=None, log=None, tf_writer=None, flag='val', save_out=False,
base_features=None, base_targets=None, verbose=True):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to evaluate mode
model.eval()
all_preds = []
all_targets = []
all_feats = []
feat_dim = 64
features = torch.empty((0, feat_dim)).cuda()
targets = torch.empty(0, dtype=torch.long).cuda()
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
feats, output = model(input)
features = torch.cat((features, feats))
targets = torch.cat((targets, target))
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
_, pred = torch.max(output, 1)
all_preds.extend(pred.detach().cpu().numpy())
all_targets.extend(target.detach().cpu().numpy())
all_feats.extend(feats.detach().cpu().numpy())
cf = confusion_matrix(all_targets, all_preds).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_acc = cls_hit / cls_cnt
output = ('{flag} Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(flag=flag, top1=top1, top5=top5, loss=losses))
out_cls_acc = '%s Class Accuracy: %s' % (
flag, (np.array2string(cls_acc, separator=',', formatter={'float_kind': lambda x: "%.3f" % x})))
# calculate many-shot, median shot and few-shot accuracy
if train_labels is not None:
many, med, few, pc = \
shot_acc(np.array(all_preds), np.array(all_targets), train_labels, acc_per_cls=True)
if verbose:
print(f"Cls Many Shot: {many}, Cls Med Shot: {med}, Cls Few Shot: {few}, CLS Acc: {np.mean(pc)}")
if save_out:
fname = '%s/%s/outputs_%s.pkl' % (args.root_model, args.store_name, flag)
print('===> Saving outputs to ' + fname)
with open(fname, 'wb') as f:
pickle.dump({
'feats': np.array(all_feats),
'labels': np.array(all_targets),
'preds': np.array(all_preds),
}, f, protocol=4)
contrastive_acc = None
if base_features is not None and base_targets is not None:
many, med, few, (pc, centroid_contrastive_acc) = \
centroids_balanceness_feature_extractor(base_features,
base_targets,
features, targets)
if verbose:
# Nearest centroid neightbor
print(
f"\tNCN Many Shot: {many}, NCN Med Shot: {med}, NCN Few Shot: {few}, NCN Acc: {centroid_contrastive_acc}")
output += "\nCent. Per Class Contrastive Acc:" + str((pc, centroid_contrastive_acc)) + "\n"
contrastive_acc = centroid_contrastive_acc
if log is not None:
log.write(output + '\n')
log.write(out_cls_acc + '\n')
log.flush()
if tf_writer is not None:
tf_writer.add_scalar('loss/test_' + flag, losses.avg, epoch)
tf_writer.add_scalar('acc/test_' + flag + '_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/test_' + flag + '_top5', top5.avg, epoch)
tf_writer.add_scalars('acc/test_' + flag + '_cls_acc', {str(i): x for i, x in enumerate(cls_acc)}, epoch)
return top1.avg, features, targets, contrastive_acc
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
epoch = epoch + 1
if epoch <= 5:
lr = args.lr * epoch / 5
elif epoch > 180:
lr = args.lr * 0.0001
elif epoch > 160:
lr = args.lr * 0.01
else:
lr = args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()