-
Notifications
You must be signed in to change notification settings - Fork 2
/
auto_attack_eval.py
122 lines (103 loc) · 4.85 KB
/
auto_attack_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
import torch.optim as optim
from torchvision import datasets, transforms
from models.wideresnet import *
from autoattack.autoattack import AutoAttack
parser = argparse.ArgumentParser(description='PyTorch CIFAR PGD Attack Evaluation')
parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
help='input batch size for testing (default: 200)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--epsilon', default=0.031, type=float,
help='perturbation')
parser.add_argument('--num-steps', default=20, type=int,
help='perturb number of steps')
parser.add_argument('--step-size', default=0.003,
help='perturb step size')
parser.add_argument('--random',
default=True,
help='random initialization for PGD')
parser.add_argument('--model-path',
default='./checkpoints/model_cifar_wrn.pt',
help='model for white-box attack evaluation')
parser.add_argument('--source-model-path',
default='./checkpoints/model_cifar_wrn.pt',
help='source model for black-box attack evaluation')
parser.add_argument('--target-model-path',
default='./checkpoints/model_cifar_wrn.pt',
help='target model for black-box attack evaluation')
parser.add_argument('--white-box-attack', default=True,
help='whether perform white-box attack')
parser.add_argument('--mark', default=None, type=str,
help='log file name')
parser.add_argument('--widen_factor', default=None, type=int,
help='widen_factor for wideresnet')
parser.add_argument('--num_classes', default=10, type=int,
help='cifar10 or cifar100')
parser.add_argument('--dataparallel', default=False, type=bool,
help='whether model is trained with dataparallel')
args = parser.parse_args()
if args.epsilon == 8.0:
args.epsilon = 8.0 / 255
# settings
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# set up data loader
transform_test = transforms.Compose([transforms.ToTensor(),])
if args.num_classes == 100:
testset = torchvision.datasets.CIFAR100(root='./data/cifar100', train=False, download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs)
else:
testset = torchvision.datasets.CIFAR10(root='./data/cifar10', train=False, download=True, transform=transform_test)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, **kwargs)
def _pgd_whitebox(model,
X,
y,
adversary,
epsilon=args.epsilon,
num_steps=args.num_steps,
step_size=args.step_size):
out = model(X)
err = (out.data.max(1)[1] != y.data).float().sum()
X_pgd = adversary.run_standard_evaluation(X, y, bs=X.size(0))
err_pgd = (model(X_pgd).data.max(1)[1] != y.data).float().sum()
return err, err_pgd
def eval_adv_test_whitebox(model, device, test_loader, adverary):
"""
evaluate model by white-box attack
"""
model.eval()
robust_err_total = 0
natural_err_total = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
# pgd attack
X, y = Variable(data, requires_grad=True), Variable(target)
err_natural, err_robust = _pgd_whitebox(model, X, y, adverary)
robust_err_total += err_robust
natural_err_total += err_natural
open("Logs/"+args.mark,"a+").write("robust_err_total: "+str(robust_err_total)+"\n")
open("Logs/"+args.mark,"a+").write("natural_err_total: "+str(natural_err_total)+"\n")
def main():
if args.white_box_attack:
# white-box attack
open("Logs/"+args.mark,"a+").write('pgd white-box attack\n')
model = WideResNet(num_classes=args.num_classes, widen_factor=args.widen_factor)
if args.dataparallel:
model = nn.DataParallel(model).to(device)
else:
model = model.to(device)
model.load_state_dict(torch.load(args.model_path), strict=False)
adversary = AutoAttack(model, norm='Linf', eps=args.epsilon, version='standard', log_path = "Logs/"+args.mark)
adversary.seed = 0
eval_adv_test_whitebox(model, device, test_loader, adversary)
if __name__ == '__main__':
main()