-
Notifications
You must be signed in to change notification settings - Fork 25
/
app_gradio.py
78 lines (57 loc) · 3.31 KB
/
app_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Most code is from https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI
# Please combine the configs of tuning and p2p when using this demo
#!/usr/bin/env python
from __future__ import annotations
import os
from subprocess import getoutput
import gradio as gr
import torch
from gradio_utils.app_training import create_training_demo
from gradio_utils.inference import InferencePipeline
from gradio_utils.trainer import Trainer
TITLE = '# [Video-P2P](https://video-p2p.github.io/) UI'
ORIGINAL_SPACE_ID = 'video-p2p-library/Video-P2P-Demo'
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
GPU_DATA = getoutput('nvidia-smi')
SHARED_UI_WARNING = f'''## Attention - Training doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
else:
SETTINGS = 'Settings'
INVALID_GPU_WARNING = f'''## Attention - the specified GPU is invalid. Training may not work. Make sure you have selected a `T4 GPU` for this task.'''
CUDA_NOT_AVAILABLE_WARNING = f'''## Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
You can use "T4 small/medium" to run this demo.
</center>
'''
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''The environment variable `HF_TOKEN` is not specified. Feel free to specify your Hugging Face token with write permission if you don't want to manually provide it for every run.
<center>
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>.
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
</center>
'''
HF_TOKEN = os.getenv('HF_TOKEN')
def show_warning(warning_text: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown(warning_text)
return demo
pipe = InferencePipeline(HF_TOKEN)
trainer = Trainer(HF_TOKEN)
with gr.Blocks(css='style.css') as demo:
if SPACE_ID == ORIGINAL_SPACE_ID:
show_warning(SHARED_UI_WARNING)
elif not torch.cuda.is_available():
show_warning(CUDA_NOT_AVAILABLE_WARNING)
elif (not 'T4' in GPU_DATA):
show_warning(INVALID_GPU_WARNING)
gr.Markdown(TITLE)
with gr.Tabs():
with gr.TabItem('Train'):
create_training_demo(trainer, pipe)
if not HF_TOKEN:
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
demo.queue(max_size=1).launch(share=False)