Skip to content

Commit 2e6dd62

Browse files
committed
Merge branch 'feature-robtillman'
2 parents 21fbd95 + a4496c6 commit 2e6dd62

File tree

3 files changed

+38
-3
lines changed

3 files changed

+38
-3
lines changed

src/QuantitativePrimer.pdf

1.67 KB
Binary file not shown.

src/QuantitativePrimer.tex

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,10 +5,10 @@
55
% Should be of the format V<A>.<B>.<C>
66
% A: Increment with major changes in layouts, large new sections added.
77
% B: Increment when new questions are added
8-
% C: Increment with minor error corrections.
8+
% C: Increment with minor error corrections and additions
99
% When B is incrememted, C is reset to zero
1010
% When A is incrememted, B and C is reset to zero
11-
\newcommand{\docversion}{V1.1.1}
11+
\newcommand{\docversion}{V1.1.2}
1212
\begin{document}
1313

1414
%\doublespacing
@@ -67,7 +67,11 @@
6767

6868
\vfill
6969
\noindent
70-
Special thanks to Luke Miller for some clever solutions, William Xing for catching typos and suggestions on soft questions, Iztok Pizorn for corrections in the code, Nita Bester for proofreading and support, and Joshua Curk for editing.
70+
Special thanks to Luke Miller and Robert Tillman for some clever solutions,
71+
William Xing for catching typos and suggestions on soft questions,
72+
Iztok Pizorn for corrections in the code,
73+
Nita Bester for proofreading and support,
74+
and Joshua Curk for editing.
7175

7276

7377
\clearpage

src/answers/normalfourthmoment.tex

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -217,6 +217,37 @@
217217
the third moment is related to the skewness,
218218
the second moment to the variance, and the first moment is the mean.
219219

220+
Robert Tillman suggested the following clever solution, which is the shortest method to derive $E\left( X^4 \right)$ for the given normal distribution.
221+
Recognise
222+
\begin{align*}
223+
\Var(X^2) &= \E\left((X^2)^2\right) - \E\left( X^2 \right)^2 \\
224+
&= \E\left(X^4\right) - \E\left( X^2 \right)^2 \\
225+
\E\left(X^4\right)
226+
&= \Var(X^2) + \E\left( X^2 \right)^2
227+
\end{align*}
228+
and that
229+
\begin{align*}
230+
\frac{X^2}{\sigma^2} \sim \chi^2_{1}
231+
\text{.}
232+
\end{align*}
233+
The $\chi^2_k$ distribution has a mean of $k$ and variance of $2k$.
234+
Define a random variable
235+
$Z \sim \chi^2_{1}$
236+
and write
237+
\begin{align*}
238+
X^2 &= {\sigma^2} Z \\
239+
\E\left(X^2 \right) &= {\sigma^2} \E( Z ) \\
240+
&= {\sigma^2} (1) \\
241+
\Var\left(X^2 \right) &= (\sigma^2)^2 \Var( Z ) \\
242+
&= {\sigma^4} (2) \\
243+
\end{align*}
244+
giving the same answer as above,
245+
\begin{align*}
246+
\E\left(X^4\right) &= 2 \sigma^4 + \sigma^4 \\
247+
&= 3 \sigma^4
248+
\text{.}
249+
\end{align*}
250+
220251

221252
In my experience, interviewers from investment banks love questions about the normal distribution.
222253
This might be in response to interview solution manuals like

0 commit comments

Comments
 (0)