-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtester.py
154 lines (122 loc) · 4.42 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torch.nn.functional as F
import numpy as np
import wandb
import math
import sklearn
# project
import probspec_routines as ps_routines
def test(model, test_loader, config):
test_function = {
"AddProblem": ps_routines.add_problem_test,
"CopyMemory": ps_routines.copy_problem_test,
"MNIST": _test_classif,
"CIFAR10": _test_classif,
"SpeechCommands": _test_classif,
"CharTrajectories": _test_classif,
"PhysioNet": _test_classif,
"PennTreeBankChar": _test_language_modeling,
}[config.dataset]
test_acc = test_function(model, test_loader, config)
return test_acc
def _test_classif(model, test_loader, config):
# send model to device
device = config.device
if config.dataset == "MNIST" and config.permuted:
permutation = torch.Tensor(np.random.permutation(784).astype(np.float64)).long()
model.eval()
model.to(device)
# Summarize results
correct = 0
total = 0
true_y_cpus = []
pred_y_cpus = []
auc = 0
if config.report_ppl:
criterion = torch.nn.CrossEntropyLoss()
running_ppl = 0.
ppl_N = 0
with torch.no_grad():
# Iterate through data
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
if config.dataset in ["MNIST", "CIFAR10"]:
_, in_channels, x, y = inputs.shape
inputs = inputs.view(-1, in_channels, x * y)
if config.permuted and config.dataset == "MNIST":
inputs = inputs[:, :, permutation]
outputs = model(inputs)
if len(outputs.shape) == 1:
labels = labels.float()
preds = (outputs > 0.0).int()
else:
_, preds = torch.max(outputs, 1)
if len(labels.shape) > 1:
labels = labels.reshape(-1)
total += labels.size(0)
correct += (preds == labels).sum().item()
# Save for AUC
if config.report_auc:
true_y_cpus.append(labels.detach().cpu())
pred_y_cpus.append(outputs.detach().cpu())
if config.report_ppl:
loss = criterion(outputs, labels)
running_ppl += (inputs.size(1) - config.seq_length + config.valid_seq_len) * loss.item()
ppl_N += inputs.size(1) - config.seq_length + config.valid_seq_len
# Print results
test_acc = correct / total
print(
"Accuracy of the network on the {} test samples: {}".format(
total, (100 * test_acc)
)
)
if config.report_auc:
true_y_cpus = torch.cat(true_y_cpus, dim=0)
pred_y_cpus = torch.cat(pred_y_cpus, dim=0)
auc = sklearn.metrics.roc_auc_score(true_y_cpus, pred_y_cpus)
print(f"AUC: {auc}")
if config.report_ppl:
ppl = math.exp(running_ppl / ppl_N)
print(f"PPL: {ppl}")
return test_acc, ppl
return test_acc, auc
def _test_language_modeling(model, test_loader, config):
# send model to device
device = config.device
model.eval()
model.to(device)
eff_history = config.seq_length - config.valid_seq_len
# Summarize results
criterion = torch.nn.CrossEntropyLoss()
total = 0
running_loss = 0
if config.report_ppl or config.report_bpc:
running_ppl = 0.
ppl_N = 0
with torch.no_grad():
# Iterate through data
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)[:, eff_history:].contiguous().view(-1)
outputs = model(inputs)
outputs = outputs[:, eff_history:].contiguous().view(-1, config.vocab_size)
loss = criterion(outputs, labels)
running_loss += loss.item() * labels.shape[0]
total += labels.shape[0]
if config.report_ppl or config.report_bpc:
n = inputs.shape[1] - eff_history
running_ppl += n * loss.item()
ppl_N += n
# Print results
test_loss = running_loss / total
print(f"\tTest loss: {test_loss:.2f}")
ppl =0.
if config.report_ppl:
ppl = math.exp(running_ppl / ppl_N)
print(f"\tTest PPL: {ppl:.2f}")
bpc = 0.
if config.report_bpc:
bpc = (running_ppl / ppl_N) / math.log(2)
print(f"\tTest BPC: {bpc:.2f}")
return test_loss, ppl, bpc