-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quantum_reactor_simulation.py
91 lines (66 loc) · 3.35 KB
/
quantum_reactor_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
from scipy.integrate import odeint
from enhanced_ecosystem_with_psi import EnhancedHumanQuantumEcosystem
class QuantumReactor(EnhancedHumanQuantumEcosystem):
def __init__(self, num_particles=1000, subspace_dimensions=11, interaction_strength=0.1, base_frequency=1e15):
super().__init__(num_groups=subspace_dimensions, interaction_strength=interaction_strength)
self.num_particles = num_particles
self.subspace_dimensions = subspace_dimensions
self.particle_states = np.random.rand(num_particles, subspace_dimensions)
self.fusion_threshold = 0.95
self.fusion_energy = 17.6 # MeV for D-T fusion
def subspace_excitation(self, t):
return np.sin(2 * np.pi * self.base_frequency * t + self.psi)
def quantum_tunneling(self, particle_states):
tunneling_prob = np.exp(-1 / (particle_states + 1e-10))
return np.random.rand(*particle_states.shape) < tunneling_prob
def fusion_reaction(self, particle_states):
fusion_prob = np.mean(particle_states, axis=1)
fusion_events = np.random.rand(self.num_particles) < fusion_prob
return fusion_events
def calculate_energy_output(self, fusion_events):
return np.sum(fusion_events) * self.fusion_energy
def reactor_dynamics(self, t, state):
particle_states = state.reshape((self.num_particles, self.subspace_dimensions))
# Apply subspace excitation
excitation = self.subspace_excitation(t)
particle_states *= (1 + 0.1 * excitation)
# Apply quantum tunneling
tunneling = self.quantum_tunneling(particle_states)
particle_states[tunneling] += 0.1
# Apply harmonic balancer effect
balancer_effect = 0.1 * np.tanh(particle_states)
particle_states += balancer_effect
# Calculate fusion events
fusion_events = self.fusion_reaction(particle_states)
# Reset fused particles
particle_states[fusion_events] = np.random.rand(np.sum(fusion_events), self.subspace_dimensions)
# Calculate energy output
energy_output = self.calculate_energy_output(fusion_events)
return particle_states.flatten(), energy_output
def run_simulation(self, duration, time_steps):
t = np.linspace(0, duration, time_steps)
initial_state = self.particle_states.flatten()
def ode_wrapper(state, t):
new_state, _ = self.reactor_dynamics(t, state)
return new_state
states = odeint(ode_wrapper, initial_state, t)
energy_outputs = []
for i in range(len(t)):
_, energy = self.reactor_dynamics(t[i], states[i])
energy_outputs.append(energy)
return t, states, energy_outputs
def run_quantum_reactor_simulation():
reactor = QuantumReactor()
duration = 1e-12 # 1 picosecond
time_steps = 1000
t, states, energy_outputs = reactor.run_simulation(duration, time_steps)
total_energy = np.sum(energy_outputs)
average_power = total_energy / duration
print(f"Quantum Reactor Simulation Results:")
print(f"Total Energy Output: {total_energy:.2f} MeV")
print(f"Average Power Output: {average_power:.2f} MeV/s")
print(f"Peak Power Output: {np.max(energy_outputs):.2f} MeV/s")
return t, states, energy_outputs
if __name__ == "__main__":
run_quantum_reactor_simulation()