-
-
Notifications
You must be signed in to change notification settings - Fork 64
/
crypto_bbs.lua
931 lines (784 loc) · 36.1 KB
/
crypto_bbs.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
--[[
--This file is part of zenroom
--
--Copyright (C) 2023 Dyne.org foundation
--designed, written and maintained by Luca Di Domenico, Rebecca Selvaggini and Alberto Lerda
--
--This program is free software: you can redistribute it and/or modify
--it under the terms of the GNU Affero General Public License v3.0
--
--This program is distributed in the hope that it will be useful,
--but WITHOUT ANY WARRANTY; without even the implied warranty of
--MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
--GNU Affero General Public License for more details.
--
--Along with this program you should have received a copy of the
--GNU Affero General Public License v3.0
--If not, see http://www.gnu.org/licenses/agpl.txt
--
--]]
--[[
# Optimization notes
The create_generators function (see Section 4.2 of this draft
https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html)
is rather slow. The function takes an integer count and returns count
points on the curve G1 . It is fully deterministic, and after the
first call it caches its output, so that in successive calls we
generate none or less points. The sequence of points produced by the
function is always the same for a fixed hash function.
Hence, one could simply cache the first n points for SHA and the first
n points for SHAKE. In this scenario, these 2n points should be
loaded as ciphersuite parameters.
One could also make the function itself faster by implementing some of
its operations in C. In particular, one such operation could be
hash_to_curve and its subfunctions. hash_to_curve is called by
create_generators. It is a uniform encoding from byte strings to
points in G1. That is, the distribution of its output is statistically
close to uniform in G1 (see Section 3 of this draft
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16).
hash_to_curve should become faster when implented in C since
hashtopoint (which behaves somewhat similarly to hash_to_curve) is
implemented in C and it is rather fast.
--]]
local bbs = {}
local OCTET_SCALAR_LENGTH = 32 -- ceil(log2(PRIME_R)/8)
local OCTET_POINT_LENGTH = 48 --ceil(log2(p)/8)
--see draft-irtf-cfrg-bbs-signatures-latest Appendix A.1
local PRIME_R = ECP.order()
--draft-irtf-cfrg-pairing-friendly-curves-11 Section 4.2.1
local IDENTITY_G1 = ECP.generator()
local K = nil -- see function K_INIT() below
local CIPHERSUITE_SHAKE = {
expand = expand_message_xof,
ciphersuite_ID = O.from_string("BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_"),
generator_seed = O.from_string("BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_MESSAGE_GENERATOR_SEED"),
seed_dst = O.from_string("BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_SIG_GENERATOR_SEED_"),
generator_dst = O.from_string("BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_SIG_GENERATOR_DST_"),
hash_to_scalar_dst = O.from_string('BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_H2S_'),
map_msg_to_scalar_as_hash_dst = O.from_string('BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_MAP_MSG_TO_SCALAR_AS_HASH_'),
expand_dst = O.from_string('BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_SIG_DET_DST_'),
P1 = ECP.from_zcash(O.from_hex('91b784eaac4b2b2c6f9bfb2c9eae97e817dd12bba49a0821d175a50f1632465b319ca9fb81dda3fb0434412185e2cca5')),
GENERATORS = {},
GENERATOR_N = 1,
GENERATOR_V = expand_message_xof(O.from_string("BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_MESSAGE_GENERATOR_SEED"),
O.from_string("BBS_BLS12381G1_XOF:SHAKE-256_SSWU_RO_SIG_GENERATOR_SEED_"), 48)
}
local CIPHERSUITE_SHA = {
expand = expand_message_xmd,
ciphersuite_ID = O.from_string("BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_"),
generator_seed = O.from_string("BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_MESSAGE_GENERATOR_SEED"),
seed_dst = O.from_string("BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_SIG_GENERATOR_SEED_"),
generator_dst = O.from_string("BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_SIG_GENERATOR_DST_"),
hash_to_scalar_dst = O.from_string('BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_H2S_'),
map_msg_to_scalar_as_hash_dst = O.from_string('BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_MAP_MSG_TO_SCALAR_AS_HASH_'),
expand_dst = O.from_string('BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_SIG_DET_DST_'),
P1 = ECP.from_zcash(O.from_hex('8533b3fbea84e8bd9ccee177e3c56fbe1d2e33b798e491228f6ed65bb4d1e0ada07bcc4489d8751f8ba7a1b69b6eecd7')),
GENERATORS = {},
GENERATOR_N = 1,
GENERATOR_V = expand_message_xmd(O.from_string("BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_MESSAGE_GENERATOR_SEED"),
O.from_string("BBS_BLS12381G1_XMD:SHA-256_SSWU_RO_SIG_GENERATOR_SEED_"), 48)
}
-- Take as input the hash as string and return a table with the corresponding parameters
function bbs.ciphersuite(hash_name)
-- seed_len = 48
if hash_name:lower() == 'sha256' then
return CIPHERSUITE_SHA
elseif hash_name:lower() == 'shake256' then
return CIPHERSUITE_SHAKE
else
error('Invalid hash: use sha256 or shake256', 2)
end
end
-- draft-irtf-cfrg-hash-to-curve-16 Appendix E.2
-- Constants used for the 11-isogeny map.
local function K_INIT()
return {{ -- K[1][i]
BIG.new(O.from_hex('11a05f2b1e833340b809101dd99815856b303e88a2d7005ff2627b56cdb4e2c85610c2d5f2e62d6eaeac1662734649b7')),
BIG.new(O.from_hex('17294ed3e943ab2f0588bab22147a81c7c17e75b2f6a8417f565e33c70d1e86b4838f2a6f318c356e834eef1b3cb83bb')),
BIG.new(O.from_hex('0d54005db97678ec1d1048c5d10a9a1bce032473295983e56878e501ec68e25c958c3e3d2a09729fe0179f9dac9edcb0')), --
BIG.new(O.from_hex('1778e7166fcc6db74e0609d307e55412d7f5e4656a8dbf25f1b33289f1b330835336e25ce3107193c5b388641d9b6861')),
BIG.new(O.from_hex('0e99726a3199f4436642b4b3e4118e5499db995a1257fb3f086eeb65982fac18985a286f301e77c451154ce9ac8895d9')), --
BIG.new(O.from_hex('1630c3250d7313ff01d1201bf7a74ab5db3cb17dd952799b9ed3ab9097e68f90a0870d2dcae73d19cd13c1c66f652983')),
BIG.new(O.from_hex('0d6ed6553fe44d296a3726c38ae652bfb11586264f0f8ce19008e218f9c86b2a8da25128c1052ecaddd7f225a139ed84')),--
BIG.new(O.from_hex('17b81e7701abdbe2e8743884d1117e53356de5ab275b4db1a682c62ef0f2753339b7c8f8c8f475af9ccb5618e3f0c88e')),
BIG.new(O.from_hex('080d3cf1f9a78fc47b90b33563be990dc43b756ce79f5574a2c596c928c5d1de4fa295f296b74e956d71986a8497e317')),--
BIG.new(O.from_hex('169b1f8e1bcfa7c42e0c37515d138f22dd2ecb803a0c5c99676314baf4bb1b7fa3190b2edc0327797f241067be390c9e')),
BIG.new(O.from_hex('10321da079ce07e272d8ec09d2565b0dfa7dccdde6787f96d50af36003b14866f69b771f8c285decca67df3f1605fb7b')),
BIG.new(O.from_hex('06e08c248e260e70bd1e962381edee3d31d79d7e22c837bc23c0bf1bc24c6b68c24b1b80b64d391fa9c8ba2e8ba2d229'))--
},--
{ -- K[2][i]
BIG.new(O.from_hex('08ca8d548cff19ae18b2e62f4bd3fa6f01d5ef4ba35b48ba9c9588617fc8ac62b558d681be343df8993cf9fa40d21b1c')),--
BIG.new(O.from_hex('12561a5deb559c4348b4711298e536367041e8ca0cf0800c0126c2588c48bf5713daa8846cb026e9e5c8276ec82b3bff')),
BIG.new(O.from_hex('0b2962fe57a3225e8137e629bff2991f6f89416f5a718cd1fca64e00b11aceacd6a3d0967c94fedcfcc239ba5cb83e19')),--
BIG.new(O.from_hex('03425581a58ae2fec83aafef7c40eb545b08243f16b1655154cca8abc28d6fd04976d5243eecf5c4130de8938dc62cd8')),--
BIG.new(O.from_hex('13a8e162022914a80a6f1d5f43e7a07dffdfc759a12062bb8d6b44e833b306da9bd29ba81f35781d539d395b3532a21e')),
BIG.new(O.from_hex('0e7355f8e4e667b955390f7f0506c6e9395735e9ce9cad4d0a43bcef24b8982f7400d24bc4228f11c02df9a29f6304a5')),--
BIG.new(O.from_hex('0772caacf16936190f3e0c63e0596721570f5799af53a1894e2e073062aede9cea73b3538f0de06cec2574496ee84a3a')),--
BIG.new(O.from_hex('14a7ac2a9d64a8b230b3f5b074cf01996e7f63c21bca68a81996e1cdf9822c580fa5b9489d11e2d311f7d99bbdcc5a5e')),
BIG.new(O.from_hex('0a10ecf6ada54f825e920b3dafc7a3cce07f8d1d7161366b74100da67f39883503826692abba43704776ec3a79a1d641')),--
BIG.new(O.from_hex('095fc13ab9e92ad4476d6e3eb3a56680f682b4ee96f7d03776df533978f31c1593174e4b4b7865002d6384d168ecdd0a')), --
BIG.new(1)
},
{ -- K[3][i]
BIG.new(O.from_hex('090d97c81ba24ee0259d1f094980dcfa11ad138e48a869522b52af6c956543d3cd0c7aee9b3ba3c2be9845719707bb33')),--
BIG.new(O.from_hex('134996a104ee5811d51036d776fb46831223e96c254f383d0f906343eb67ad34d6c56711962fa8bfe097e75a2e41c696')),
BIG.new(O.from_hex('cc786baa966e66f4a384c86a3b49942552e2d658a31ce2c344be4b91400da7d26d521628b00523b8dfe240c72de1f6')),
BIG.new(O.from_hex('01f86376e8981c217898751ad8746757d42aa7b90eeb791c09e4a3ec03251cf9de405aba9ec61deca6355c77b0e5f4cb')),--
BIG.new(O.from_hex('08cc03fdefe0ff135caf4fe2a21529c4195536fbe3ce50b879833fd221351adc2ee7f8dc099040a841b6daecf2e8fedb')),--
BIG.new(O.from_hex('16603fca40634b6a2211e11db8f0a6a074a7d0d4afadb7bd76505c3d3ad5544e203f6326c95a807299b23ab13633a5f0')),
BIG.new(O.from_hex('04ab0b9bcfac1bbcb2c977d027796b3ce75bb8ca2be184cb5231413c4d634f3747a87ac2460f415ec961f8855fe9d6f2')),--
BIG.new(O.from_hex('0987c8d5333ab86fde9926bd2ca6c674170a05bfe3bdd81ffd038da6c26c842642f64550fedfe935a15e4ca31870fb29')),--
BIG.new(O.from_hex('09fc4018bd96684be88c9e221e4da1bb8f3abd16679dc26c1e8b6e6a1f20cabe69d65201c78607a360370e577bdba587')),--
BIG.new(O.from_hex('0e1bba7a1186bdb5223abde7ada14a23c42a0ca7915af6fe06985e7ed1e4d43b9b3f7055dd4eba6f2bafaaebca731c30')),--
BIG.new(O.from_hex('19713e47937cd1be0dfd0b8f1d43fb93cd2fcbcb6caf493fd1183e416389e61031bf3a5cce3fbafce813711ad011c132')),
BIG.new(O.from_hex('18b46a908f36f6deb918c143fed2edcc523559b8aaf0c2462e6bfe7f911f643249d9cdf41b44d606ce07c8a4d0074d8e')),
BIG.new(O.from_hex('0b182cac101b9399d155096004f53f447aa7b12a3426b08ec02710e807b4633f06c851c1919211f20d4c04f00b971ef8')),--
BIG.new(O.from_hex('0245a394ad1eca9b72fc00ae7be315dc757b3b080d4c158013e6632d3c40659cc6cf90ad1c232a6442d9d3f5db980133')),--
BIG.new(O.from_hex('05c129645e44cf1102a159f748c4a3fc5e673d81d7e86568d9ab0f5d396a7ce46ba1049b6579afb7866b1e715475224b')),--
BIG.new(O.from_hex('15e6be4e990f03ce4ea50b3b42df2eb5cb181d8f84965a3957add4fa95af01b2b665027efec01c7704b456be69c8b604'))},
{ -- K[4][i]
BIG.new(O.from_hex('16112c4c3a9c98b252181140fad0eae9601a6de578980be6eec3232b5be72e7a07f3688ef60c206d01479253b03663c1')),
BIG.new(O.from_hex('1962d75c2381201e1a0cbd6c43c348b885c84ff731c4d59ca4a10356f453e01f78a4260763529e3532f6102c2e49a03d')),
BIG.new(O.from_hex('058df3306640da276faaae7d6e8eb15778c4855551ae7f310c35a5dd279cd2eca6757cd636f96f891e2538b53dbf67f2')),--
BIG.new(O.from_hex('16b7d288798e5395f20d23bf89edb4d1d115c5dbddbcd30e123da489e726af41727364f2c28297ada8d26d98445f5416')),
BIG.new(O.from_hex('0be0e079545f43e4b00cc912f8228ddcc6d19c9f0f69bbb0542eda0fc9dec916a20b15dc0fd2ededda39142311a5001d')),--
BIG.new(O.from_hex('08d9e5297186db2d9fb266eaac783182b70152c65550d881c5ecd87b6f0f5a6449f38db9dfa9cce202c6477faaf9b7ac')),--
BIG.new(O.from_hex('166007c08a99db2fc3ba8734ace9824b5eecfdfa8d0cf8ef5dd365bc400a0051d5fa9c01a58b1fb93d1a1399126a775c')),
BIG.new(O.from_hex('16a3ef08be3ea7ea03bcddfabba6ff6ee5a4375efa1f4fd7feb34fd206357132b920f5b00801dee460ee415a15812ed9')),
BIG.new(O.from_hex('1866c8ed336c61231a1be54fd1d74cc4f9fb0ce4c6af5920abc5750c4bf39b4852cfe2f7bb9248836b233d9d55535d4a')),
BIG.new(O.from_hex('167a55cda70a6e1cea820597d94a84903216f763e13d87bb5308592e7ea7d4fbc7385ea3d529b35e346ef48bb8913f55')),
BIG.new(O.from_hex('04d2f259eea405bd48f010a01ad2911d9c6dd039bb61a6290e591b36e636a5c871a5c29f4f83060400f8b49cba8f6aa8')),--
BIG.new(O.from_hex('0accbb67481d033ff5852c1e48c50c477f94ff8aefce42d28c0f9a88cea7913516f968986f7ebbea9684b529e2561092')),--
BIG.new(O.from_hex('0ad6b9514c767fe3c3613144b45f1496543346d98adf02267d5ceef9a00d9b8693000763e3b90ac11e99b138573345cc')),--
BIG.new(O.from_hex('02660400eb2e4f3b628bdd0d53cd76f2bf565b94e72927c1cb748df27942480e420517bd8714cc80d1fadc1326ed06f7')),--
BIG.new(O.from_hex('0e0fa1d816ddc03e6b24255e0d7819c171c40f65e273b853324efcd6356caa205ca2f570f13497804415473a1d634b8f')),--
BIG.new(1)}
}
end
-- RFC8017 section 4
-- converts a nonnegative integer to an octet string of a specified length.
local function i2osp(x, x_len)
return O.new(BIG.new(x)):pad(x_len)
end
-- RFC8017 section 4
-- converts an octet string to a nonnegative integer.
local function os2ip(oct)
return BIG.new(oct)
end
--draft-irtf-cfrg-bbs-signatures Section 3.3.1
function bbs.keygen(ikm, key_info)
ikm = ikm or O.random(32) -- O.random is a secure RNG.
-- TODO: add warning on curve must be BLS12-381
local INITSALT = O.from_string("BBS-SIG-KEYGEN-SALT-")
if not key_info then
key_info = O.empty()
elseif type(key_info) == 'string' then
key_info = O.from_string(key_info)
end
-- using BLS381
-- 254 < log2(PRIME_R) < 255
-- ceil((3 * ceil(log2(PRIME_R))) / 16)
local l = 48
local salt = INITSALT
local sk = INT.new(0)
while sk == INT.new(0) do
salt = sha256(salt)
local prk = hkdf_extract(salt, ikm .. i2osp(0, 1))
local okm = hkdf_expand(prk, key_info .. i2osp(l, 2), l)
sk = os2ip(okm) % ECP.order()
end
return sk
end
--draft-irtf-cfrg-bbs-signatures Section 3.3.2
function bbs.sk2pk(sk)
return (ECP2.generator() * sk):to_zcash()
end
-----------------------------------------------
-----------------------------------------------
-----------------------------------------------
-- THE FOLLOWING MULTI-LINE COMMENT CONTAINS GENERIC VERSIONS OF THE hash_to_field function.
-- draft-irtf-cfrg-hash-to-curve-16 section 5.2
--it returns u a table of tables containing big integers representing elements of the field
--[[
function bbs.hash_to_field(msg, count, DST)
-- draft-irtf-cfrg-hash-to-curve-16 section 8.8.1 (BLS12-381 parameters)
-- BLS12381G1_XMD:SHA-256_SSWU_RO_
local m = 1
local L = 64
local len_in_bytes = count*m*L
local uniform_bytes = bbs.expand_message_xmd(msg, DST, len_in_bytes)
local u = {}
for i = 0, (count-1) do
local u_i = {}
for j = 0, (m-1) do
local elm_offset = L*(j+i*m)
local tv = uniform_bytes:sub(elm_offset+1,L+elm_offset)
local e_j = BIG.mod(tv, p) --local e_j = os2ip(tv) % p
u_i[j+1] = e_j
end
u[i+1] = u_i
end
return u
end
--hash_to_field CASE m = 1
function bbs.hash_to_field_m1(msg, count, DST)
-- draft-irtf-cfrg-hash-to-curve-16 section 8.8.1 (BLS12-381 parameters)
-- BLS12381G1_XMD:SHA-256_SSWU_RO_
local L = 64
local len_in_bytes = count*L
local uniform_bytes = bbs.expand_message_xmd(msg, DST, len_in_bytes)
local u = {}
for i = 0, (count-1) do
local elm_offset = L*i
local tv = uniform_bytes:sub(elm_offset+1,L+elm_offset)
u[i+1] = BIG.mod(tv, p) --local e_j = os2ip(tv) % p
end
return u
end
--]]
-- draft-irtf-cfrg-hash-to-curve-16 section 5.2
-- It returns u a table of tables containing big integers representing elements of the field (SPECIFIC CASE m = 1, count = 2)
function bbs.hash_to_field_m1_c2(ciphersuite, msg, dst)
local p = ECP.prime()
local L = 64
local uniform_bytes = ciphersuite.expand(msg, dst, 2*L)
local u = {}
u[1] = BIG.mod(uniform_bytes:sub(1,L), p)
u[2] = BIG.mod(uniform_bytes:sub(L+1,2*L), p)
return u
end
-- draft-irtf-cfrg-hash-to-curve-16 Section 4
-- If the third argument is FALSE, it returns the first argument, otherwise it returns the second argument
local function CMOV(arg1, arg2, bool)
if bool then
return arg2
else
return arg1
end
end
-- draft-irtf-cfrg-hash-to-curve-16 Appendix F.2.1.2
-- It returns EITHER (true, sqrt(u/v)) OR (false, sqrt(Z * (u/v))
local function sqrt_ratio_3mod4(u, v)
local p = ECP.prime()
-- draft-irtf-cfrg-hash-to-curve-16 Appendix I.1
-- SPECIALISED FOR OUR CASE (m=1, p = 3 mod 4)
local cc1 = BIG.div( BIG.new(O.from_hex('1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaac')), BIG.new(4)) -- (p+1)/4 INTEGER ARITHMETIC
-- draft-irtf-cfrg-hash-to-curve-16 Appendix F.2.1.2
local c1 = BIG.div(BIG.modsub(p, BIG.new(3), p), BIG.new(4)) -- (p-3)/4 INTEGER ARITHMETIC
local c2 = (BIG.modsub(p, BIG.new(11), p)):modpower(cc1, p) -- Sqrt(-Z) in curve where q = 3 mod 4
local tv1 = v:modsqr(p)
local tv2 = BIG.modmul(u, v, p)
tv1 = BIG.modmul(tv1, tv2, p)
local y1 = tv1:modpower(c1, p)
y1 = BIG.modmul(y1, tv2, p)
local y2 = BIG.modmul( y1, c2, p)
local tv3 = y1:modsqr(p)
tv3 = BIG.modmul(tv3, v, p)
local isQR = tv3 == u
return isQR, CMOV(y2, y1, isQR)
end
-- draft-irtf-cfrg-hash-to-curve-16 Appendix F.2
-- It returns the (x,y) coordinate of a point over E' (isogenous curve)
local function map_to_curve_simple_swu(u)
local p = ECP.prime()
local Z = BIG.new(11)
-- Coefficient A',B' for the isogenous curve.
local A = BIG.new(O.from_hex('144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98936f8da0e0f97f5cf428082d584c1d'))
local B = BIG.new(O.from_hex('12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a316ceaa5d1cc48e98e172be0'))
-- u is of type BIG.
local tv1 = u:modsqr(p)
tv1 = BIG.modmul(Z, tv1, p)
local tv2 = tv1:modsqr(p)
tv2 = (tv2 + tv1) % p
local tv3 = (tv2 + BIG.new(1)) % p
tv3 = BIG.modmul(B, tv3, p)
local tv4 = CMOV( Z, BIG.modsub( p, tv2, p), tv2 ~= BIG.new(0) )
tv4 = BIG.modmul(A, tv4, p)
tv2 = tv3:modsqr(p)
local tv6 = tv4:modsqr(p)
local tv5 = BIG.modmul(A, tv6, p)
tv2 = (tv2 + tv5) % p
tv2 = BIG.modmul(tv2, tv3, p)
tv6 = BIG.modmul(tv6, tv4, p)
tv5 = BIG.modmul(B, tv6, p)
tv2 = (tv2 + tv5) % p
local x = BIG.modmul(tv1, tv3, p)
local is_gx1_square, y1 = sqrt_ratio_3mod4(tv2, tv6)
local y = BIG.modmul(tv1, u, p)
y = BIG.modmul(y, y1, p)
x = CMOV(x, tv3, is_gx1_square)
y = CMOV(y, y1, is_gx1_square)
y = CMOV( BIG.modsub(p, y, p), y, (u:parity()) == (y:parity()))
return {['x'] = BIG.moddiv( x, tv4, p), ['y'] = y}
end
--polynomial evaluation using Horner's rule
local function pol_evaluation(x, K_array)
local p = ECP.prime()
local len = #K_array
local y = K_array[len]
for i = len-1, 1, -1 do
y = (K_array[i] + y:modmul(x, p)) % p
end
return y
end
--draft-irtf-cfrg-hash-to-curve-16 Appendix E.2
-- It maps a point to BLS12-381 from an isogenous curve.
local function iso_map(point)
local p = ECP.prime()
K = K or K_INIT()
local x_num = pol_evaluation(point.x, K[1])
local x_den = pol_evaluation(point.x, K[2])
local y_num = pol_evaluation(point.x, K[3])
local y_den = pol_evaluation(point.x, K[4])
local x = BIG.moddiv(x_num, x_den, p)
local y = y_num:modmul(point.y, p)
y = y:moddiv(y_den, p)
return ECP.new(x,y)
end
-- draft-irtf-cfrg-hash-to-curve-16 Section 6.6.3
-- It returns a point in the curve BLS12-381.
function bbs.map_to_curve(u)
return iso_map(map_to_curve_simple_swu(u))
end
-- draft-irtf-cfrg-hash-to-curve-16 Section 7
-- It returns a point in the correct subgroup.
local function clear_cofactor(ecp_point)
local h_eff = BIG.new(O.from_hex('d201000000010001'))
return ecp_point * h_eff
end
-- draft-irtf-cfrg-hash-to-curve-16 Section 3
-- It returns a point in the correct subgroup.
function bbs.hash_to_curve(ciphersuite, msg, dst)
-- local u = bbs.hash_to_field_m1(msg, 2, DST)
local u = bbs.hash_to_field_m1_c2(ciphersuite, msg, dst)
local Q0 = bbs.map_to_curve(u[1])
local Q1 = bbs.map_to_curve(u[2])
return clear_cofactor(Q0 + Q1)
end
--draft-irtf-cfrg-bbs-signatures Section 4.2
--It returns an array of generators.
function bbs.create_generators(ciphersuite, count)
if #ciphersuite.GENERATORS < count then
-- local seed_len = 48 --ceil((ceil(log2(PRIME_R)) + k)/8)
local v = ciphersuite.GENERATOR_V
local n = ciphersuite.GENERATOR_N
local generators = {[IDENTITY_G1] = true}
for _,val in pairs(ciphersuite.GENERATORS) do
generators[val] = true
end
for i = #ciphersuite.GENERATORS + 1, count do
v = ciphersuite.expand(v..i2osp(n,4), ciphersuite.seed_dst, 48)
n = n + 1
local candidate = bbs.hash_to_curve(ciphersuite, v, ciphersuite.generator_dst)
if (generators[candidate]) then
i = i-1
else
generators[candidate] = true
table.insert(ciphersuite.GENERATORS, candidate)
end
end
ciphersuite.GENERATOR_V = v
ciphersuite.GENERATOR_N = n
return ciphersuite.GENERATORS
else
return {table.unpack(ciphersuite.GENERATORS, 1, count)}
end
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.4
-- It converts a message written in octects into a BIG modulo PRIME_R (order of subgroup)
local function hash_to_scalar(ciphersuite, msg_octects, dst)
local BIG_0 = BIG.new(0)
-- draft-irtf-cfrg-bbs-signatures-latest Section 3.4.3
local EXPAND_LEN = 48
-- Default value of DST when not provided (see also Section 6.2.2)
dst = dst or ciphersuite.hash_to_scalar_dst
local counter = 0
local hashed_scalar = BIG_0
while hashed_scalar == BIG_0 do
if counter > 255 then
error("The counter of hash_to_scalar is larger than 255", 2)
end
local msg_prime = msg_octects .. i2osp(counter, 1)
local uniform_bytes = ciphersuite.expand(msg_prime, dst, EXPAND_LEN)
hashed_scalar = BIG.mod(uniform_bytes, PRIME_R) -- = os2ip(uniform_bytes) % PRIME_R
counter = counter + 1
end
return hashed_scalar
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.3.1
-- It converts a message written in octects into a BIG modulo PRIME_R (order of subgroup)
function bbs.MapMessageToScalarAsHash(ciphersuite, msg, dst)
-- Default value of DST when not provided (see also Section 6.2.2)
dst = dst or ciphersuite.map_msg_to_scalar_as_hash_dst
-- assert(#msg < 2^64))
if (#dst > 255) then
error("dst is too long in MapMessageToScalarAsHash", 2)
end
local msg_scalar = hash_to_scalar(ciphersuite, msg, dst)
return msg_scalar
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.7.1
-- It converts an input array into an octet.
local function serialization(input_array)
local octet_result = O.empty()
local el_octs = O.empty()
for i=1, #input_array do
local elt = input_array[i]
local elt_type = type(elt)
if (elt_type == "zenroom.ecp") or (elt_type == "zenroom.epc2") then
el_octs = elt:to_zcash()
elseif (elt_type == "zenroom.big") then
el_octs = i2osp(elt, OCTET_SCALAR_LENGTH)
elseif (elt_type == "number") then
el_octs = i2osp(elt, 8)
else
error("Invalid type passed inside serialize", 2)
end
octet_result = octet_result .. el_octs
end
return octet_result
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.5
-- It calculates a domain value, distillating all essential contextual information for a signature.
local function calculate_domain(ciphersuite, pk_octet, Q1, Q2, H_points, header)
header = header or O.empty()
local len = #H_points
-- assert(#(header) < 2^64)
-- assert(L < 2^64)
local dom_array = {len, Q1, Q2, table.unpack(H_points)}
local dom_octs = serialization(dom_array) .. ciphersuite.ciphersuite_ID
local dom_input = pk_octet .. dom_octs .. i2osp(#header, 8) .. header
local domain = hash_to_scalar(ciphersuite, dom_input)
return domain
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 3.4.1
-- It computes a deterministic signature from a secret key (sk) and optionally over a header and/or a vector of messages.
function bbs.sign(ciphersuite, sk, pk, messages_octets, header)
-- Default values for header and messages.
header = header or O.empty()
messages_octets = messages_octets or {}
-- Converting generic octet messages into scalars
local messages = {}
for k,v in pairs(messages_octets) do
messages[k] = bbs.MapMessageToScalarAsHash(ciphersuite, v)
end
local LEN = #messages
local point_array = bbs.create_generators(ciphersuite, LEN + 2)
local Q_1, Q_2 = table.unpack(point_array, 1, 2)
local H_array = { table.unpack(point_array, 3, LEN + 2) }
local domain = calculate_domain(ciphersuite, pk, Q_1, Q_2, H_array, header)
local serialise_array = {sk, domain, table.unpack(messages)}
local e_s_octs = serialization(serialise_array)
local e_s_len = OCTET_SCALAR_LENGTH * 2
local e_s_expand = ciphersuite.expand(e_s_octs, ciphersuite.expand_dst, e_s_len)
local e = hash_to_scalar(ciphersuite, e_s_expand:sub(1, OCTET_SCALAR_LENGTH))
local s = hash_to_scalar(ciphersuite, e_s_expand:sub(OCTET_SCALAR_LENGTH + 1, e_s_len))
local BB = ciphersuite.P1 + (Q_1 * s) + (Q_2 * domain)
if (LEN > 0) then
for i = 1,LEN do
BB = BB + (H_array[i]* messages[i])
end
end
assert(BIG.mod(sk + e, PRIME_R) ~= BIG.new(0))
local AA = BB * BIG.moddiv(BIG.new(1), sk + e, PRIME_R)
return serialization({AA, e, s})
end
--draft-irtf-cfrg-bbs-signatures Section 4.7.3
-- It is the opposite function of "serialize" with input "(POINT, SCALAR, SCALAR)"
local function octets_to_signature(signature_octets)
local expected_len = OCTET_SCALAR_LENGTH * 2 + OCTET_POINT_LENGTH
if (#signature_octets ~= expected_len) then
error("Wrong length of signature_octets", 2)
end
local A_octets = signature_octets:sub(1, OCTET_POINT_LENGTH)
local AA = ECP.from_zcash(A_octets)
if (AA == IDENTITY_G1) then
error("Point is identity", 2)
end
local BIG_0 = BIG.new(0)
local index = OCTET_POINT_LENGTH + 1
local end_index = index + OCTET_SCALAR_LENGTH - 1
local e = os2ip(signature_octets:sub(index, end_index))
if (e == BIG_0) or (e >= PRIME_R) then
error("Wrong e in deserialization", 2)
end
index = index + OCTET_SCALAR_LENGTH
end_index = index + OCTET_SCALAR_LENGTH - 1
local s = os2ip(signature_octets:sub(index, end_index))
if (s == BIG_0) or (s >= PRIME_R) then
error("Wrong s in deserialization", 2)
end
return { AA, e, s}
end
--draft-irtf-cfrg-bbs-signatures Section 4.7.6
function bbs.octets_to_pub_key(pk)
local W = ECP2.from_zcash(pk)
-- ECP2.infinity == Identity_G2
if (W == ECP2.infinity()) then
error("W is identity G2", 2)
end
if (W * PRIME_R ~= ECP2.infinity()) then
error("W is not in subgroup", 2)
end
return W
end
--draft-irtf-cfrg-bbs-signatures Section 3.4.2
function bbs.verify(ciphersuite, pk, signature, messages_octets, header)
-- Default values
header = header or O.empty()
messages_octets = messages_octets or {}
-- Converting generic octet messages into scalars
local messages = {}
for k,v in pairs(messages_octets) do
messages[k] = bbs.MapMessageToScalarAsHash(ciphersuite, v)
end
-- Deserialization
local signature_result = octets_to_signature(signature)
local AA, e, s = table.unpack(signature_result)
local W = bbs.octets_to_pub_key(pk)
local LEN = #messages
-- Procedure
local point_array = bbs.create_generators(ciphersuite, LEN + 2)
local Q_1, Q_2 = table.unpack(point_array, 1, 2)
local H_points = { table.unpack(point_array, 3, LEN + 2) }
local domain = calculate_domain(ciphersuite, pk, Q_1, Q_2, H_points, header)
local BB = ciphersuite.P1 + (Q_1 * s) + (Q_2 * domain)
if (LEN > 0) then
for i = 1,LEN do
BB = BB + (H_points[i] * messages[i])
end
end
local LHS = ECP2.ate(W + (ECP2.generator() * e), AA)
local RHS = ECP2.ate(ECP2.generator(), BB)
return LHS == RHS
end
---------------------------------
-- Credentials:ProofGen,ProofVerify -------
---------------------------------
---------------------------------
---------------------------------
---------------------------------
---------------------------------
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.1
-- It returns count random scalar.
function bbs.calculate_random_scalars(count)
local scalar_array = {}
local scalar = nil
--[[ This does not seem uniformly random:
for i = 1, count do
scalar_array[i] = BIG.mod(O.random(48), PRIME_R)
end
--]]
-- We leave it like this because it should yield a more uniform distribution.
while #scalar_array < count do
scalar = os2ip(O.random(32))
if scalar < PRIME_R then
table.insert(scalar_array, scalar)
end
end
return scalar_array
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.6
-- It returns a scalar using various points and array.
local function calculate_challenge(ciphersuite, Aprime, Abar, D, C1, C2, i_array, msg_array, domain, ph)
ph = ph or O.empty()
local R_len = #i_array
-- We avoid the check R_len < 2^64
if R_len ~= #msg_array then
error("i_array length is not equal to msg_array length", 2)
end
-- We avoid the check #(ph) < 2^64
local c_array = {}
if R_len ~= 0 then
c_array = {Aprime, Abar, D, C1, C2, R_len}
for i = 1, R_len do
c_array[i+6] = i_array[i] -1
end
for i = 1, R_len do
c_array[i+6+R_len] = msg_array[i]
end
c_array[7+2*R_len] = domain
else
c_array = {Aprime, Abar, D, C1, C2, R_len, domain}
end
local c_octs = serialization(c_array)
local c_input = c_octs .. i2osp(#ph, 8) .. ph
local challenge = hash_to_scalar(ciphersuite, c_input)
return challenge
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 3.4.3
function bbs.proof_gen(ciphersuite, pk, signature, header, ph, messages_octets, disclosed_indexes)
-- disclosed_indexes is a STRICTLY INCREASING array of POSITIVE integers.
header = header or O.empty()
ph = ph or O.empty()
messages_octets = messages_octets or {}
disclosed_indexes = disclosed_indexes or {}
-- Converting generic octet messages into scalars
local messages = {}
for k,v in pairs(messages_octets) do
messages[k] = bbs.MapMessageToScalarAsHash(ciphersuite, v)
end
-- Deserialisation
local signature_result = octets_to_signature(signature)
local AA, e, s = table.unpack(signature_result)
local msg_len = #messages
local disclosed_messages = {}
local secret_messages = {}
local secret_indexes = {}
local pointer = 1
if #disclosed_indexes == 0 then
for i =1, msg_len do
secret_indexes[i] = true
end
else
for i = 1, msg_len do
if i == disclosed_indexes[pointer] then
disclosed_messages[pointer] = messages[i]
pointer = pointer + 1
else
secret_indexes[i] = true
end
end
end
local secret_len = msg_len - #disclosed_indexes
local points_array = bbs.create_generators(ciphersuite, msg_len + 2)
local Q_1, Q_2 = table.unpack(points_array,1,2)
local all_H_points = {table.unpack(points_array, 3, msg_len+2)}
local secret_H_points = {}
for i = 1, msg_len do
if secret_indexes[i] then
table.insert(secret_H_points, all_H_points[i])
table.insert(secret_messages, messages[i])
end
end
local domain = calculate_domain(ciphersuite, pk, Q_1, Q_2, all_H_points, header)
local random_scalars = bbs.calculate_random_scalars(6 + secret_len)
local r1, r2, et, r2t, r3t, st = table.unpack(random_scalars,1,6)
local mjt = {table.unpack(random_scalars, 7, 6 + secret_len)}
local BB = ciphersuite.P1 + (Q_1 * s) + (Q_2 * domain)
for i = 1, msg_len do
BB = BB + (all_H_points[i] * messages[i])
end
local r3 = BIG.modinv(r1, PRIME_R)
local Aprime = AA * r1
local Abar = (Aprime * BIG.modneg( e, PRIME_R)) + (BB * r1)
local D = (BB * r1) + (Q_1 * r2)
local sprime = BIG.mod( BIG.modmul(r2, r3, PRIME_R) + s, PRIME_R)
local C1 = (Aprime * et) + (Q_1 * r2t)
local C2 = (D * BIG.modneg( r3t, PRIME_R)) + (Q_1 * st)
for i = 1, secret_len do
C2 = C2 + (secret_H_points[i] * mjt[i])
end
local c = calculate_challenge(ciphersuite ,Aprime, Abar, D, C1, C2, disclosed_indexes, disclosed_messages, domain, ph)
local ehat = BIG.mod(BIG.modmul(c, e, PRIME_R) + et, PRIME_R)
local r2hat = BIG.mod( BIG.modmul(c, r2, PRIME_R) + r2t, PRIME_R)
local r3hat = BIG.mod( BIG.modmul(c, r3, PRIME_R) + r3t, PRIME_R)
local shat = BIG.mod( BIG.modmul(c, sprime, PRIME_R) + st, PRIME_R)
local proof = { Aprime, Abar, D, c, ehat, r2hat, r3hat, shat}
for j = 1, secret_len do
proof[j+8] = BIG.mod( BIG.modmul(c, secret_messages[j], PRIME_R) + mjt[j], PRIME_R)
end
return serialization(proof)
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 4.7.5
local function octets_to_proof(proof_octets)
local proof_len_floor = 3*OCTET_POINT_LENGTH + 5*OCTET_SCALAR_LENGTH
if #proof_octets < proof_len_floor then
error("proof_octets is too short", 2)
end
local index = 1
local return_array = {}
for i = 1, 3 do
local end_index = index + OCTET_POINT_LENGTH - 1
return_array[i] = ECP.from_zcash(proof_octets:sub(index, end_index))
if return_array[i] == IDENTITY_G1 then
error("Invalid point", 2)
end
index = index + OCTET_POINT_LENGTH
end
local j = 4
while index < #proof_octets do
local end_index = index + OCTET_SCALAR_LENGTH -1
return_array[j] = os2ip(proof_octets:sub(index, end_index))
if (return_array[j] == BIG.new(0)) or (return_array[j]>=PRIME_R) then
error("Not a scalar in octets_to_proof", 2)
end
index = index + OCTET_SCALAR_LENGTH
j = j+1
end
if index ~= #proof_octets +1 then
error("Index is not right length",2)
end
local msg_commitments = {}
if j > 9 then
msg_commitments = {table.unpack(return_array, 9, j-1)}
end
local ret_array = {table.unpack(return_array, 1, 8)}
ret_array[9] = msg_commitments
return ret_array
end
-- draft-irtf-cfrg-bbs-signatures-latest Section 3.4.4
function bbs.proof_verify(ciphersuite, pk, proof, header, ph, disclosed_messages_octets, disclosed_indexes)
header = header or O.empty()
ph = ph or O.empty()
disclosed_messages_octets = disclosed_messages_octets or {}
disclosed_indexes = disclosed_indexes or {}
-- Converting generic octet messages into scalars
local disclosed_messages = {}
for k,v in pairs(disclosed_messages_octets) do
disclosed_messages[k] = bbs.MapMessageToScalarAsHash(ciphersuite, v)
end
--Deserialization
local proof_result = octets_to_proof(proof)
local Aprime, Abar, D, c, ehat, r2hat, r3hat, shat, commitments = table.unpack(proof_result)
local W = bbs.octets_to_pub_key(pk)
local len_U = #commitments
local len_R = #disclosed_indexes
local len_L = len_R + len_U
--end Deserialization
--Preconditions
for _,i in pairs(disclosed_indexes) do
if (i < 1) or (i > len_L) then
error("disclosed_indexes out of range",2)
end
end
if #disclosed_messages ~= len_R then
error("Unmatching indexes and messages", 2)
end
--end Preconditions
local create_out = bbs.create_generators(ciphersuite, len_L +2)
local Q_1, Q_2 = table.unpack(create_out, 1, 2)
local MsgGenerators = {table.unpack(create_out, 3, len_L+2)}
local disclosed_H = {}
local secret_H = {}
local counter_d = 1
for i = 1, len_L do
if i == disclosed_indexes[counter_d] then
table.insert(disclosed_H, MsgGenerators[i])
counter_d = counter_d +1
else
table.insert(secret_H, MsgGenerators[i])
end
end
local domain = calculate_domain(ciphersuite, pk, Q_1, Q_2, MsgGenerators, header)
local C1 = (Abar - D)*c + Aprime*ehat + Q_1*r2hat
local T = ciphersuite.P1 + Q_2*domain
for i = 1, len_R do
T = T + disclosed_H[i]*disclosed_messages[i]
end
local C2 = T*c - D*r3hat + Q_1*shat
for i = 1, len_U do
C2 = C2 + secret_H[i]*commitments[i]
end
local cv = calculate_challenge(ciphersuite ,Aprime, Abar, D, C1, C2, disclosed_indexes, disclosed_messages, domain, ph)
if c ~= cv then
return false
end
if Aprime == IDENTITY_G1 then
return false
end
local LHS = ECP2.ate(W, Aprime)
local RHS = ECP2.ate(ECP2.generator(), Abar)
return LHS == RHS
end
return bbs