forked from cemfi/hannds
-
Notifications
You must be signed in to change notification settings - Fork 1
/
kalman_mapper.py
326 lines (260 loc) · 10.9 KB
/
kalman_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""Kalman filter based hand mapping."""
import os
from collections import namedtuple
import math
import mido
from mido.midifiles.tracks import _to_abstime
import scipy.stats
import hannds_files
# Data
def kalman_mapper_data(debug=False):
data_dict = {}
module_directory = os.path.dirname(os.path.abspath(__file__))
midi_files = hannds_files.all_midi_files(os.path.join(module_directory, 'data-hannds'), absolute_path=True)
for idx, midi_file in enumerate(midi_files):
midi = mido.MidiFile(midi_file)
assert midi.ticks_per_beat == 480
midi_data = midi.tracks[1], midi.tracks[0]
key = os.path.basename(midi_file)
data_dict[key] = midi_data
if debug:
break
_check_left_right(data_dict)
joined_dict = {key: _join_tracks(*value) for (key, value) in data_dict.items()}
return joined_dict
def _check_left_right(data):
for key in data.keys():
name_left = data[key][0][0].name
name_right = data[key][1][0].name
if 'links' not in name_left.lower():
raise Exception(f'{key}: {name_left} does not match "links"')
if 'rechts' not in name_right.lower():
raise Exception(f'{key}: {name_right} does not match "rechts"')
def _join_tracks(left_track, right_track):
default_tempo = mido.bpm2tempo(120)
default_ticks_per_beat = 480
messages = []
for msg in _to_abstime(left_track):
is_note_on = (msg.type == 'note_on')
is_note_off = (msg.type == 'note_off')
if is_note_on or is_note_off:
time = mido.tick2second(msg.time, default_ticks_per_beat, default_tempo)
event = MidiEvent(pitch=msg.note, is_note_on=is_note_on, when=time, is_left=True)
messages.append(event)
for msg in _to_abstime(right_track):
is_note_on = (msg.type == 'note_on')
is_note_off = (msg.type == 'note_off')
if is_note_on or is_note_off:
time = mido.tick2second(msg.time, default_ticks_per_beat, default_tempo)
event = MidiEvent(pitch=msg.note, is_note_on=is_note_on, when=time, is_left=False)
messages.append(event)
messages.sort(key=lambda msg: msg.when)
return messages
# Algorithm
MidiEvent = namedtuple('MidiEvent', ['pitch', 'is_note_on', 'when', 'is_left'])
class HandConstraints(object):
def __init__(self):
self.sounding_notes = [False] * 128
self.right_hand_notes = []
self.left_hand_notes = []
def right_hand(self):
if self.right_hand_notes is None:
self._assign_notes()
return self.right_hand_notes
def left_hand(self):
if self.left_hand_notes is None:
self._assign_notes()
return self.left_hand_notes
def midi_event(self, event):
self.right_hand_notes = None
self.left_hand_notes = None
self.sounding_notes[event.pitch] = event.is_note_on
def _assign_notes(self):
comfortable_hand_span = 14 # 14 semitones = an ninth
self.right_hand_notes = []
self.left_hand_notes = []
lowest = self._lowest_note()
if lowest == 127:
return
highest = self._highest_note()
if highest == 0:
return
for i in range(128):
if self.sounding_notes[i]:
if (i <= lowest + comfortable_hand_span) and (i < highest - comfortable_hand_span):
self.left_hand_notes.append(i)
elif (i > lowest + comfortable_hand_span) and (i >= highest - comfortable_hand_span):
self.right_hand_notes.append(i)
def _lowest_note(self):
for i in range(128):
if self.sounding_notes[i]:
return i
return 127
def _highest_note(self):
for i in reversed(range(128)):
if self.sounding_notes[i]:
return i
return 0
class KalmanMapper(object):
def __init__(self):
self.left_hand_pos = 43.0 # mLeftHandPosition
self.right_hand_pos = 77.0
self.left_hand_variance = 1000.0
self.right_hand_variance = 1000.0
self.hand_constraints = HandConstraints()
self.time_last_rh = None
self.time_last_lh = None
self.last_was_left_hand = False # the result
self.saved_result = []
def midi_event(self, event):
variance_per_second = 20.0
midi_variance = 20.0
self.hand_constraints.midi_event(event)
if not event.is_note_on:
return
assign_left = False
for p in self.hand_constraints.left_hand():
if p == event.pitch:
assign_left = True
self.saved_result.append(('left', 1.0))
assign_right = False
if not assign_left:
for p in self.hand_constraints.right_hand():
if p == event.pitch:
assign_right = True
self.saved_result.append(('right', 1.0))
if not assign_left and not assign_right:
delta_rh = abs(self.right_hand_pos - event.pitch) / math.sqrt(self.right_hand_variance)
delta_lh = abs(self.left_hand_pos - event.pitch) / math.sqrt(self.left_hand_variance)
assign_right = delta_lh > delta_rh
assign_left = not assign_right
if assign_left:
normal = scipy.stats.norm(self.left_hand_pos, math.sqrt(self.left_hand_variance))
p = normal.pdf(event.pitch)
assert p <= 1
self.saved_result.append(('left', p))
else:
normal = scipy.stats.norm(self.right_hand_pos, math.sqrt(self.right_hand_variance))
p = normal.pdf(event.pitch)
assert p <= 1
self.saved_result.append(('right', p))
self.last_was_left_hand = assign_left
if assign_left:
if self.time_last_lh is not None:
delta = event.when - self.time_last_lh
self.left_hand_variance += delta * variance_per_second
self.left_hand_pos += self.left_hand_variance / (self.left_hand_variance + midi_variance) * (
event.pitch - self.left_hand_pos)
self.left_hand_variance -= self.left_hand_variance / (
self.left_hand_variance + midi_variance) * self.left_hand_variance
self.time_last_lh = event.when
self.last_was_left_hand = True
if assign_right:
if self.time_last_rh:
delta = event.when - self.time_last_rh
self.right_hand_variance += delta * variance_per_second
self.right_hand_pos += self.right_hand_variance / (self.right_hand_variance + midi_variance) * (
event.pitch - self.right_hand_pos)
self.right_hand_variance -= self.right_hand_variance / (
self.right_hand_variance + midi_variance) * self.right_hand_variance
self.time_last_rh = event.when
self.last_was_left_hand = False
# Evaluation
def evaluate_all(data):
print('Piece;Forward-Backward;Forward Only;Backward Only;Num Notes')
total_correct = 0
total_wrong = 0
correct_forward = 0
wrong_forward = 0
correct_backward = 0
wrong_backward = 0
for key in data.keys():
accuracy = evaluate_piece(data, key)
total_correct += accuracy.correct
total_wrong += accuracy.wrong
correct_forward += accuracy.correct_forward
wrong_forward += accuracy.wrong_forward
correct_backward += accuracy.correct_backward
wrong_backward += accuracy.wrong_backward
acc = total_correct / (total_correct + total_wrong) * 100.0
acc_forward = correct_forward / (correct_forward + wrong_forward) * 100.0
acc_backward = correct_backward / (correct_backward + wrong_backward) * 100.0
print(f'Summary;{acc:.2f}%;{acc_forward:.2f}%;{acc_backward:.2f}%;{total_correct + total_wrong}')
def note_off_mapping(events): # Maybe write a more efficient version
note_on_idx = -1
note_off_idx = 0
result = []
idx = 0
while idx < len(events):
if not events[idx].is_note_on:
note_off_idx += 1
if events[idx].is_note_on:
note_on_idx += 1
pitch = events[idx].pitch
search_idx = idx + 1
skipped_offs = 0
while search_idx < len(events):
if not events[search_idx].is_note_on and events[search_idx].pitch != pitch:
skipped_offs += 1
elif not events[search_idx].is_note_on and events[search_idx].pitch == pitch:
result.append(note_off_idx + skipped_offs)
break
search_idx += 1
else:
raise Exception('malformed')
idx += 1
return result
def evaluate_piece(data, key):
print(key, end=';')
forward_mapper = KalmanMapper()
backward_mapper = KalmanMapper()
correct_forward = 0
wrong_forward = 0
for event in data[key]:
forward_mapper.midi_event(event)
if event.is_note_on:
if forward_mapper.last_was_left_hand == event.is_left:
correct_forward += 1
else:
wrong_forward += 1
correct_backward = 0
wrong_backward = 0
start_time = data[key][-1].when
for event in reversed(data[key]):
event = MidiEvent(event.pitch, not event.is_note_on, start_time - event.when, event.is_left)
backward_mapper.midi_event(event)
if event.is_note_on:
if backward_mapper.last_was_left_hand == event.is_left:
correct_backward += 1
else:
wrong_backward += 1
result_forward = forward_mapper.saved_result
result_backward = list(reversed(backward_mapper.saved_result))
note_off_indices = note_off_mapping(data[key])
correct_notes = 0
wrong_notes = 0
idx = 0
for event in data[key]:
if not event.is_note_on: continue
res1 = result_forward[idx]
res2 = result_backward[note_off_indices[idx]]
if res1[1] >= res2[1]:
predicted_is_left = res1[0] == 'left'
else:
predicted_is_left = res2[0] == 'left'
if predicted_is_left == event.is_left:
correct_notes += 1
else:
wrong_notes += 1
idx += 1
accuracy = correct_notes / (correct_notes + wrong_notes) * 100.0
acc_foward = correct_forward / (correct_forward + wrong_forward) * 100.0
acc_backward = correct_backward / (correct_backward + wrong_backward) * 100.0
print(f'{accuracy:.1f}%;{acc_foward:.1f}%;{acc_backward:.1f}%;{correct_notes + wrong_notes}')
Accuracy = namedtuple('Accuracy', 'correct wrong correct_forward wrong_forward correct_backward wrong_backward')
return Accuracy(correct_notes, wrong_notes, correct_forward, wrong_forward, correct_backward, wrong_backward)
def main(debug=False):
data = kalman_mapper_data(debug=debug)
evaluate_all(data)
if __name__ == '__main__':
main(False)