-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathscanpy-scripts-tests.bats
executable file
·712 lines (528 loc) · 24.8 KB
/
scanpy-scripts-tests.bats
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#!/usr/bin/env bats
# Extract the test data
setup() {
scanpy="scanpy-cli"
test_dir="post_install_tests"
data_dir="${test_dir}/data"
output_dir="${test_dir}/outputs"
raw_matrix="${data_dir}/matrix.mtx"
raw_matrix_from_raw="${data_dir}/raw/matrix.mtx"
raw_matrix_from_layer="${data_dir}/layer/matrix.mtx"
singlet_obs="${data_dir}/singlet_obs.txt"
batch_obs="${data_dir}/batch_obs.txt"
read_opt="-x $data_dir --show-obj stdout"
read_obj="${output_dir}/read.h5ad"
filter_opt="--save-raw -p n_genes 200 2500 -p c:n_counts 0 50000 -p n_cells 3 inf -p pct_counts_mito 0 0.2 -c mito '!True' --show-obj stdout --export-mtx ${output_dir}/filtered --mtx-compression gzip"
filter_obj="${output_dir}/filter.h5ad"
filter_mtx_gz="${output_dir}/filtered_matrix.mtx.gz"
test_clustering='louvain_k10_r0_5'
scrublet_tsv="${output_dir}/scrublet.tsv"
scrublet_png="${output_dir}/scrublet.png"
scrublet_obj="${output_dir}/scrublet.h5ad"
scrublet_batched_obj="${output_dir}/scrublet_batched.h5ad"
scrublet_simulate_obj="${output_dir}/scrublet_simulate.h5ad"
scrublet_opt="--input-obj-sim ${scrublet_simulate_obj} --filter --export-table ${scrublet_tsv}"
scrublet_batched_opt="--filter --batch-key batch"
norm_mtx="${output_dir}/norm"
norm_opt="--save-layer filtered -t 10000 -l all -n after -X ${norm_mtx} --show-obj stdout"
norm_obj="${output_dir}/norm.h5ad"
hvg_opt="-m 0.0125 3 -d 0.5 inf -s --show-obj stdout"
always_hvg="${data_dir}/always_hvg.txt"
never_hvg="${data_dir}/never_hvg.txt"
hvg_opt_always_never="--always-hv-genes-file ${always_hvg} --never-hv-genes-file ${never_hvg}"
hvg_obj="${output_dir}/hvg.h5ad"
hvg_obj_on_off="${output_dir}/hvg_on_off.h5ad"
regress_opt="-k n_counts --show-obj stdout"
regress_obj="${output_dir}/regress.h5ad"
scale_opt="--save-layer normalised -m 10 --show-obj stdout"
scale_obj="${output_dir}/scale.h5ad"
pca_embed="${output_dir}/pca.tsv"
pca_opt="--n-comps 50 -V auto --show-obj stdout -E ${pca_embed}"
pca_obj="${output_dir}/pca.h5ad"
neighbor_opt="-k 5,10,20 -n 25 -m umap -t euclidean --show-obj stdout"
neighbor_obj="${output_dir}/neighbor.h5ad"
tsne_embed="${output_dir}/tsne.tsv"
tsne_opt="-n 25 --use-rep X_pca --learning-rate 200 -E ${tsne_embed}"
tsne_obj="${output_dir}/tsne.h5ad"
umap_embed="${output_dir}/umap.tsv"
umap_opt="--neighbors-key k10 --min-dist 0.75 --alpha 1 --gamma 1 -E ${umap_embed}"
umap_obj="${output_dir}/umap.h5ad"
fdg_embed="${output_dir}/fdg.tsv"
fdg_opt="--neighbors-key k10 --layout fr -E ${fdg_embed} --init-pos paga"
fdg_obj="${output_dir}/fdg.h5ad"
louvain_tsv="${output_dir}/louvain.tsv"
louvain_opt="-r 0.1,0.5,1 --neighbors-key k10 --key-added k10 --export-cluster ${louvain_tsv}"
louvain_obj="${output_dir}/louvain.h5ad"
leiden_tsv="${output_dir}/leiden.tsv"
leiden_opt="-r 0.3,0.7 --neighbors-key k10 --key-added k10 -F loom --loom-write-obsm-varm --export-cluster ${leiden_tsv}"
leiden_obj="${output_dir}/leiden.loom"
diffexp_tsv="${output_dir}/diffexp.tsv"
diffexp_opt="-g ${test_clustering} --reference rest --filter-params min_in_group_fraction:0.25,min_fold_change:1.5 --save ${diffexp_tsv}"
diffexp_obj="${output_dir}/diffexp.h5ad"
test_singlet_clustering='groupby_with_singlet'
diffexp_singlet_tsv="${output_dir}/diffexp_singlet.tsv"
diffexp_singlet_opt="-g ${test_singlet_clustering} --reference rest --filter-params min_in_group_fraction:0.25,min_fold_change:1.5 --save ${diffexp_singlet_tsv}"
diffexp_singlet_obj="${output_dir}/diffexp_singlet.h5ad"
paga_opt="--neighbors-key k10 --key-added ${test_clustering} --groups ${test_clustering} --model v1.2"
paga_obj="${output_dir}/paga.h5ad"
diffmap_embed="${output_dir}/diffmap.tsv"
diffmap_opt="--neighbors-key k10 --n-comps 10 -E ${diffmap_embed}"
diffmap_obj="${output_dir}/diffmap.h5ad"
dpt_opt="--neighbors-key k10 --key-added k10 --n-dcs 10 --disallow-kendall-tau-shift --root ${test_clustering} 0"
dpt_obj="${output_dir}/dpt.h5ad"
plt_embed_opt="--projection 2d --color ${test_clustering} --title test"
plt_embed_pdf="${output_dir}/umap_${test_clustering}.pdf"
plt_paga_pdf="${output_dir}/paga_k10_r0_7.pdf"
plt_paga_obj="${output_dir}/paga_k10_r0_7.h5ad"
plt_paga_opt="--use-key paga_${test_clustering} --node-size-scale 2 --edge-width-scale 0.5 --basis diffmap --color dpt_pseudotime_k10 --frameoff --output-obj $plt_paga_obj"
test_markers='LDHB,CD3D,CD3E'
diffexp_plot_opt="--var-names $test_markers --use-raw --dendrogram --groupby ${test_clustering}"
plt_stacked_violin_opt="${diffexp_plot_opt} --no-jitter --swap-axes"
plt_stacked_violin_pdf="${output_dir}/sviolin_${test_clustering}_LDHB_CD3D_CD3E.pdf"
plt_dotplot_pdf="${output_dir}/dot_${test_clustering}_LDHB_CD3D_CD3E.pdf"
plt_matrixplot_pdf="${output_dir}/matrix_${test_clustering}_LDHB_CD3D_CD3E.pdf"
plt_heatmap_pdf="${output_dir}/heatmap_${test_clustering}_LDHB_CD3D_CD3E.pdf"
plt_rank_genes_groups_opt="--rgg --groups 3,4"
plt_rank_genes_groups_singlet_opt="--rgg"
plt_rank_genes_groups_stacked_violin_pdf="${output_dir}/rggsviolin_${test_clustering}.pdf"
plt_rank_genes_groups_matrix_pdf="${output_dir}/rggmatrix_${test_clustering}.pdf"
plt_rank_genes_groups_dot_pdf="${output_dir}/rggdot_${test_clustering}.pdf"
plt_rank_genes_groups_dot_singlet_pdf="${output_dir}/rggdot_${test_singlet_clustering}.pdf"
plt_rank_genes_groups_heatmap_pdf="${output_dir}/rggheatmap_${test_clustering}.pdf"
harmony_integrate_obj="${output_dir}/harmony_integrate.h5ad"
harmony_integrate_opt="--batch-key ${test_clustering}"
harmony_plt_embed_opt="--projection 2d --color ${test_clustering} --title 'PCA embeddings after harmony' --basis 'X_pca_harmony'"
noharmony_plt_embed_opt="--projection 2d --color ${test_clustering} --title 'PCA embeddings before harmony' --basis 'X_pca'"
harmony_integrated_pca_pdf="${output_dir}/harmony_pca_${test_clustering}.pdf"
noharmony_integrated_pca_pdf="${output_dir}/pca_${test_clustering}.pdf"
bbknn_obj="${output_dir}/bbknn.h5ad"
bbknn_opt="--batch-key ${test_clustering} --key-added bbknn"
mnn_obj="${output_dir}/mnn.h5ad"
mnn_opt="--save-layer uncorrected --batch-key ${test_clustering}"
combat_obj="${output_dir}/combat.h5ad"
combat_opt="--batch-key ${test_clustering}"
if [ ! -d "$data_dir" ]; then
mkdir -p $data_dir
fi
if [ ! -d "$output_dir" ]; then
mkdir -p $output_dir
fi
}
@test "Extract test data from Scanpy" {
if [ "$resume" = 'true' ] && [ -f "$raw_matrix" ]; then
skip "$raw_matrix exists"
fi
run rm -rf ${data_dir}/* && eval "echo -e \"import scanpy as sc\nfrom scanpy_scripts.cmd_utils import write_mtx\nimport os\nos.makedirs('$data_dir', exist_ok=True)\nwrite_mtx(sc.datasets.pbmc3k(), '$data_dir/')\" | python"
[ "$status" -eq 0 ]
[ -f "$raw_matrix" ]
}
@test "Test MTX write from .raw" {
if [ "$resume" = 'true' ] && [ -f "$raw_matrix_from_raw" ]; then
skip "$raw_matrix exists"
fi
run rm -rf ${data_dir}/raw/* && eval "echo -e \"import scanpy as sc\nfrom scanpy_scripts.cmd_utils import write_mtx\nimport os\nos.makedirs('$data_dir/raw', exist_ok=True)\nadata=sc.datasets.pbmc3k();adata.raw=adata\nwrite_mtx(adata, '$data_dir/raw/', use_raw=True)\" | python"
[ "$status" -eq 0 ]
[ -f "$raw_matrix_from_raw" ]
}
@test "Add genes to be considered HVGs" {
if [ "$resume" = 'true' ] && [ -f "$always_hvg" ]; then
skip "$always_hvg exists"
fi
run eval "echo -e 'MIR1302-10\nFAM138A' > $always_hvg"
}
@test "Add genes not to be considered HVGs" {
if [ "$resume" = 'true' ] && [ -f "$never_hvg" ]; then
skip "$never_hvg exists"
fi
run eval "echo -e 'ISG15\nTNFRSF4' > $never_hvg"
}
@test "Test MTX write from layers" {
if [ "$resume" = 'true' ] && [ -f "$raw_matrix_from_layer" ]; then
skip "$raw_matrix exists"
fi
run rm -rf ${data_dir}/layer/* && eval "echo -e \"import scanpy as sc\nfrom scanpy_scripts.cmd_utils import write_mtx\nimport os\nos.makedirs('$data_dir/layer', exist_ok=True)\nadata=sc.datasets.pbmc3k();adata.layers['test']=adata.X\nwrite_mtx(adata, '$data_dir/layer/', use_layer='test')\" | python"
[ "$status" -eq 0 ]
[ -f "$raw_matrix_from_layer" ]
}
@test "Make .obs with a singlet cell group" {
if [ "$resume" = 'true' ] && [ -f "$singlet_obs" ]; then
skip "$singlet_obs exists"
fi
run rm -rf $singlet_obs && eval "echo -e \"index\tgroupby_with_singlet\" > $singlet_obs && head -n 1 $data_dir/barcodes.tsv | awk -v cluster='cluster1' '{print \$1\"\t\"cluster}' >> $singlet_obs && sed -n '2,100p;101q' $data_dir/barcodes.tsv | awk -v cluster='cluster3' '{print \$1\"\t\"cluster}' >> $singlet_obs && tail -n +101 $data_dir/barcodes.tsv | awk -v cluster='cluster2' '{print \$1\"\t\"cluster}' >> $singlet_obs"
[ "$status" -eq 0 ]
[ -f "$singlet_obs" ]
}
@test "Make a batch variable" {
if [ "$resume" = 'true' ] && [ -f "$batch_obs" ]; then
skip "$singlet_obs exists"
fi
run rm -rf $batch_obs && echo -e "batch\n$(printf "%0.sbatch1\n" {1..1350})\n$(printf "%0.sbatch2\n" {1..1350})" > $batch_obs
[ "$status" -eq 0 ]
[ -f "$batch_obs" ]
}
# Read 10x dataset
@test "Scanpy object creation from 10x" {
if [ "$resume" = 'true' ] && [ -f "$read_obj" ]; then
skip "$read_obj exists and resume is set to 'true'"
fi
run rm -f $read_obj && eval "paste -d $'\t' $singlet_obs $batch_obs > obs.txt && $scanpy read --extra-obs obs.txt $read_opt $read_obj"
[ "$status" -eq 0 ]
[ -f "$read_obj" ]
}
# Filter
@test "Filter cells and genes from a raw object" {
if [ "$resume" = 'true' ] && [ -f "$filter_obj" ]; then
skip "$filter_obj exists and resume is set to 'true'"
fi
run rm -f $filter_obj && eval "$scanpy filter $filter_opt $read_obj $filter_obj"
[ "$status" -eq 0 ]
[ -f "$filter_obj" ]
[ -f "$filter_mtx_gz" ]
}
# Normalise
@test "Normalise expression values per cell" {
if [ "$resume" = 'true' ] && [ -f "$norm_obj" ]; then
skip "$norm_obj exists and resume is set to 'true'"
fi
run rm -f $norm_obj && eval "$scanpy norm $norm_opt $filter_obj $norm_obj"
[ "$status" -eq 0 ]
[ -f "$norm_obj" ] && [ -f "${norm_mtx}_matrix.mtx" ]
}
# Find variable genes
@test "Find variable genes" {
if [ "$resume" = 'true' ] && [ -f "$hvg_obj" ]; then
skip "$hvg_obj exists and resume is set to 'true'"
fi
run rm -f $hvg_obj $hvg_obj && eval "$scanpy hvg $hvg_opt $norm_obj $hvg_obj"
[ "$status" -eq 0 ]
[ -f "$hvg_obj" ]
}
@test "Find variable genes with optional turn on/off lists" {
if [ "$resume" = 'true' ] && [ -f "$hvg_obj_on_off" ]; then
skip "$hvg_obj_on_off exists and resume is set to 'true'"
fi
run rm -f $hvg_obj_on_off && eval "$scanpy hvg $hvg_opt_always_never $norm_obj $hvg_obj_on_off"
}
# Do separate doublet simulation step (normally we'd just let the main scrublet
# process do this).
@test "Run Scrublet doublet simulation" {
if [ "$resume" = 'true' ] && [ -f "$scrublet_simulate_obj" ]; then
skip "$scrublet_simulate_obj exists and resume is set to 'true'"
fi
run rm -f $srublet_simulate_obj && eval "$scanpy multiplet scrublet_simulate_doublets $hvg_obj $scrublet_simulate_obj"
[ "$status" -eq 0 ]
[ -f "$scrublet_simulate_obj" ]
}
# Detect multiplets with Scrublet
@test "Run Scrublet for multiplet detection" {
if [ "$resume" = 'true' ] && [ -f "$scrublet_obj" ]; then
skip "$scrublet_obj exists and resume is set to 'true'"
fi
run rm -f $scrublet_obj && eval "$scanpy multiplet scrublet $scrublet_opt $hvg_obj $scrublet_obj"
[ "$status" -eq 0 ]
[ -f "$scrublet_obj" ] && [ -f "$scrublet_tsv" ]
}
# Run the doublet plot from Scrublet
@test "Run Scrublet score distribution plot" {
if [ "$resume" = 'true' ] && [ -f "$scrublet_png" ]; then
skip "$scrublet_png exists and resume is set to 'true'"
fi
run rm -f $scrublet_png && eval "$scanpy plot scrublet $scrublet_obj $scrublet_png"
[ "$status" -eq 0 ]
[ -f "$scrublet_png" ]
}
# Detect multiplets with Scrublet (batched)
@test "Run Scrublet for multiplet detection (batched)" {
if [ "$resume" = 'true' ] && [ -f "$scrublet_batched_obj" ]; then
skip "$scrublet_batched_obj exists and resume is set to 'true'"
fi
run rm -f $scrublet_batched_obj && eval "$scanpy multiplet scrublet $scrublet_batched_opt $read_obj $scrublet_batched_obj"
[ "$status" -eq 0 ]
[ -f "$scrublet_batched_obj" ]
}
# Regress out variables
@test "Regress out unwanted variable" {
if [ "$resume" = 'true' ] && [ -f "$regress_obj" ]; then
skip "$regress_obj exists and resume is set to 'true'"
fi
run rm -f $regress_obj && eval "$scanpy regress $regress_opt $hvg_obj $regress_obj"
[ "$status" -eq 0 ]
[ -f "$regress_obj" ]
}
# Scale expression values
@test "Scale expression values" {
if [ "$resume" = 'true' ] && [ -f "$scale_obj" ]; then
skip "$scale_obj exists and resume is set to 'true'"
fi
run rm -f $scale_obj && eval "$scanpy scale $scale_opt $hvg_obj $scale_obj"
[ "$status" -eq 0 ]
[ -f "$scale_obj" ]
}
# Run PCA
@test "Run principal component analysis" {
if [ "$resume" = 'true' ] && [ -f "$pca_obj" ]; then
skip "$pca_obj exists and resume is set to 'true'"
fi
run rm -f $pca_obj && eval "$scanpy pca $pca_opt $scale_obj $pca_obj"
[ "$status" -eq 0 ]
[ -f "$pca_obj" ]
}
# Compute graph
@test "Run compute neighbor graph" {
if [ "$resume" = 'true' ] && [ -f "$neighbor_obj" ]; then
skip "$scaled_object exists and resume is set to 'true'"
fi
run rm -f $neighbor_obj && eval "$scanpy neighbor $neighbor_opt $pca_obj $neighbor_obj"
[ "$status" -eq 0 ]
[ -f "$neighbor_obj" ]
}
# Run TSNE
@test "Run TSNE analysis" {
if [ "$resume" = 'true' ] && [ -f "$tsne_obj" ]; then
skip "$tsne_obj exists and resume is set to 'true'"
fi
run rm -f $tsne_obj && eval "$scanpy embed tsne $tsne_opt $pca_obj $tsne_obj"
[ "$status" -eq 0 ]
[ -f "$tsne_obj" ] && [ -f "$tsne_embed" ]
}
# Run UMAP
@test "Run UMAP analysis" {
if [ "$resume" = 'true' ] && [ -f "$umap_obj" ]; then
skip "$umap_obj exists and resume is set to 'true'"
fi
run rm -f $umap_obj && eval "$scanpy embed umap $umap_opt $neighbor_obj $umap_obj"
[ "$status" -eq 0 ]
[ -f "$umap_obj" ] && [ -f "$umap_embed" ]
}
# Find clusters Louvain
@test "Run find cluster (louvain)" {
if [ "$resume" = 'true' ] && [ -f "$louvain_obj" ]; then
skip "$louvain_obj exists and resume is set to 'true'"
fi
run rm -f $louvain_obj && eval "$scanpy cluster louvain $louvain_opt $umap_obj $louvain_obj"
[ "$status" -eq 0 ]
[ -f "$louvain_obj" ] && [ -f "$louvain_tsv" ]
}
# Find clusters Leiden
@test "Run find cluster (leiden)" {
if [ "$resume" = 'true' ] && [ -f "$leiden_obj" ]; then
skip "$leiden_obj exists and resume is set to 'true'"
fi
run rm -f $leiden_obj && eval "$scanpy cluster leiden $leiden_opt $umap_obj $leiden_obj"
[ "$status" -eq 0 ]
[ -f "$leiden_obj" ] && [ -f "$leiden_tsv" ]
}
# Find markers
@test "Run find markers" {
if [ "$resume" = 'true' ] && [ -f "$diffexp_obj" ]; then
skip "$diffexp_obj exists and resume is set to 'true'"
fi
run rm -f $diffexp_obj $diffexp_tsv && eval "$scanpy diffexp $diffexp_opt $louvain_obj $diffexp_obj"
[ "$status" -eq 0 ]
[ -f "$diffexp_obj" ] && [ -f "$diffexp_tsv" ]
}
# Find markers, with singlet group
@test "Run find markers, with singlet group ignored" {
if [ "$resume" = 'true' ] && [ -f "$diffexp_singlet_obj" ]; then
skip "$diffexp_singlet_obj exists and resume is set to 'true'"
fi
run rm -f $diffexp_singlet_obj $diffexp_singlet_tsv && eval "$scanpy diffexp $diffexp_singlet_opt $louvain_obj $diffexp_singlet_obj"
[ "$status" -eq 0 ]
[ -f "$diffexp_singlet_obj" ] && [ -f "$diffexp_singlet_tsv" ]
}
# Run PAGA
@test "Run PAGA" {
if [ "$resume" = 'true' ] && [ -f "$paga_obj" ]; then
skip "$paga_obj exists and resume is set to 'true'"
fi
run rm -f $paga_obj && eval "$scanpy paga $paga_opt $louvain_obj $paga_obj"
[ "$status" -eq 0 ]
[ -f "$paga_obj" ]
}
# Run Diffmap
@test "Run Diffmap" {
if [ "$resume" = 'true' ] && [ -f "$diffmap_obj" ]; then
skip "$diffmap_obj exists and resume is set to 'true'"
fi
run rm -f $diffmap_obj && eval "$scanpy embed diffmap $diffmap_opt $paga_obj $diffmap_obj"
[ "$status" -eq 0 ]
[ -f "$diffmap_obj" ] && [ -f "$diffmap_embed" ]
}
# Run DPT
@test "Run DPT" {
if [ "$resume" = 'true' ] && [ -f "$dpt_obj" ]; then
skip "$dpt_obj exists and resume is set to 'true'"
fi
run rm -f $dpt_obj && eval "$scanpy dpt $dpt_opt $diffmap_obj $dpt_obj"
[ "$status" -eq 0 ]
[ -f "$dpt_obj" ]
}
# Run Plot embedding
@test "Run Plot embedding" {
if [ "$resume" = 'true' ] && [ -f "$plt_embed_pdf" ]; then
skip "$plt_embed_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_embed_pdf && eval "$scanpy plot embed $plt_embed_opt $louvain_obj $plt_embed_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_embed_pdf" ]
}
# Run Plot paga
@test "Run Plot trajectory" {
if [ "$resume" = 'true' ] && [ -f "$plt_paga_pdf" ]; then
skip "$plt_paga_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_paga_pdf && eval "$scanpy plot paga $plt_paga_opt $dpt_obj $plt_paga_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_paga_pdf" ] && [ -f "$plt_paga_obj" ]
}
# Run FDG, with initial coordinates from paga plotting
@test "Run FDG analysis" {
if [ "$resume" = 'true' ] && [ -f "$fdg_obj" ]; then
skip "$fdg_obj exists and resume is set to 'true'"
fi
run rm -f $fdg_obj && eval "$scanpy embed fdg $fdg_opt $plt_paga_obj $fdg_obj"
[ "$status" -eq 0 ]
[ -f "$fdg_obj" ] && [ -f "$fdg_embed" ]
}
# Plot a stacked violin plot for markers
@test "Run Plot stacked violins" {
if [ "$resume" = 'true' ] && [ -f "$plt_stacked_violin_pdf" ]; then
skip "$plt_stacked_violin_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_stacked_violin_pdf && eval "$scanpy plot sviol $plt_stacked_violin_opt $diffexp_obj $plt_stacked_violin_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_stacked_violin_pdf" ]
}
# Plot ranking of genes using a stacked violin plot for markers
@test "Run Plot ranking of genes using stacked_violin plot" {
if [ "$resume" = 'true' ] && [ -f "$plt_rank_genes_groups_stacked_violin_pdf" ]; then
skip "$plt_rank_genes_groups_stacked_violin_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_rank_genes_groups_stacked_violin_pdf && eval "$scanpy plot sviol $plt_rank_genes_groups_opt $diffexp_obj $plt_rank_genes_groups_stacked_violin_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_stacked_violin_pdf" ]
}
# Plot a dot plot for markers
@test "Run Plot dotplot" {
if [ "$resume" = 'true' ] && [ -f "$plt_dotplot_pdf" ]; then
skip "$plt_dotplot_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_dotplot_pdf && eval "$scanpy plot dot $diffexp_plot_opt $diffexp_obj $plt_dotplot_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_dotplot_pdf" ]
}
# Plot ranking of genes using a dot plot for markers
@test "Run Plot ranking of genes using a dot plot" {
if [ "$resume" = 'true' ] && [ -f "$plt_rank_genes_groups_dot_pdf" ]; then
skip "$plt_rank_genes_groups_dot_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_rank_genes_groups_dot_pdf && eval "$scanpy plot dot $plt_rank_genes_groups_opt $diffexp_obj $plt_rank_genes_groups_dot_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_dot_pdf" ]
}
# Plot ranking of genes using a dot plot for markers, high resolution clustering
@test "Run Plot ranking of genes using a dot plot, high resolution clustering" {
if [ "$resume" = 'true' ] && [ -f "$plt_rank_genes_groups_dot_singlet_pdf" ]; then
skip "$plt_rank_genes_groups_dot_singlet_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_rank_genes_groups_dot_singlet_pdf && eval "$scanpy plot dot $plt_rank_genes_groups_singlet_opt $diffexp_singlet_obj $plt_rank_genes_groups_dot_singlet_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_dot_singlet_pdf" ]
}
# Plot a matrix plot for markers
@test "Run Plot matrix" {
if [ "$resume" = 'true' ] && [ -f "$plt_matrixplot_pdf" ]; then
skip "$plt_matrixplot_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_matrixplot_pdf && eval "$scanpy plot matrix $diffexp_plot_opt $diffexp_obj $plt_matrixplot_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_matrixplot_pdf" ]
}
# Plot ranking of genes using a matrix plot for markers
@test "Run Plot ranking of genes using a matrix plot" {
if [ "$resume" = 'true' ] && [ -f "$plt_rank_genes_groups_matrix_pdf" ]; then
skip "$plt_rank_genes_groups_matrix_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_rank_genes_groups_matrix_pdf && eval "$scanpy plot matrix $plt_rank_genes_groups_opt $diffexp_obj $plt_rank_genes_groups_matrix_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_matrix_pdf" ]
}
# Plot a matrix plot for markers
@test "Run Heatmap" {
if [ "$resume" = 'true' ] && [ -f "$plt_heatmap_pdf" ]; then
skip "$plt_matrixplot_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_heatmap_pdf && eval "$scanpy plot heat $diffexp_plot_opt $diffexp_obj $plt_heatmap_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_heatmap_pdf" ]
}
# Plot ranking of genes using a matrix plot for markers
@test "Run Plot ranking of genes using a heatmap" {
if [ "$resume" = 'true' ] && [ -f "$plt_rank_genes_groups_heatmap_pdf" ]; then
skip "$plt_rank_genes_groups_heatmap_pdf exists and resume is set to 'true'"
fi
run rm -f $plt_rank_genes_groups_heatmap_pdf && eval "$scanpy plot heat $plt_rank_genes_groups_opt $diffexp_obj $plt_rank_genes_groups_heatmap_pdf"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_matrix_pdf" ]
}
# Do harmony batch correction, using clustering as batch (just for test purposes)
@test "Run Harmony batch integration using clustering as batch" {
if [ "$resume" = 'true' ] && [ -f "$harmony_integrate_obj" ]; then
skip "$harmony_integrate_obj exists and resume is set to 'true'"
fi
run rm -f $harmony_integrate_obj && eval "$scanpy integrate harmony $harmony_integrate_opt $louvain_obj $harmony_integrate_obj"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_matrix_pdf" ]
}
# Run Plot PCA embedding before harmony
@test "Run Plot PCA embedding before Harmony" {
if [ "$resume" = 'true' ] && [ -f "$noharmony_integrated_pca_pdf" ]; then
skip "$noharmony_integrated_pca_pdf exists and resume is set to 'true'"
fi
run rm -f $noharmony_integrated_pca_pdf && eval "$scanpy plot embed $noharmony_plt_embed_opt $louvain_obj $noharmony_integrated_pca_pdf"
[ "$status" -eq 0 ]
[ -f "$noharmony_integrated_pca_pdf" ]
}
# Run Plot PCA embedding after harmony
@test "Run Plot PCA embedding after Harmony" {
if [ "$resume" = 'true' ] && [ -f "$harmony_integrated_pca_pdf" ]; then
skip "$harmony_integrated_pca_pdf exists and resume is set to 'true'"
fi
run rm -f $harmony_integrated_pca_pdf && eval "$scanpy plot embed $harmony_plt_embed_opt $harmony_integrate_obj $harmony_integrated_pca_pdf"
[ "$status" -eq 0 ]
[ -f "$harmony_integrated_pca_pdf" ]
}
# Do bbknn batch correction, using clustering as batch (just for test purposes)
@test "Run BBKNN batch integration using clustering as batch" {
if [ "$resume" = 'true' ] && [ -f "$bbknn_obj" ]; then
skip "$bbknn_obj exists and resume is set to 'true'"
fi
run rm -f $bbknn_obj && eval "$scanpy integrate bbknn $bbknn_opt $louvain_obj $bbknn_obj"
[ "$status" -eq 0 ]
[ -f "$plt_rank_genes_groups_matrix_pdf" ]
}
# Do MNN batch correction, using clustering as batch (just for test purposes)
# Commented as it fails with scanpy 1.9.1
#
# @test "Run MNN batch integration using clustering as batch" {
# if [ "$resume" = 'true' ] && [ -f "$mnn_obj" ]; then
# skip "$mnn_obj exists and resume is set to 'true'"
# fi
#
# run rm -f $mnn_obj && eval "$scanpy integrate mnn $mnn_opt $louvain_obj $mnn_obj"
#
# [ "$status" -eq 0 ]
# [ -f "$mnn_obj" ]
#}
# Do ComBat batch correction, using clustering as batch (just for test purposes)
@test "Run Combat batch integration using clustering as batch" {
if [ "$resume" = 'true' ] && [ -f "$combat_obj" ]; then
skip "$combat_obj exists and resume is set to 'true'"
fi
run rm -f $combat_obj && eval "$scanpy integrate combat $combat_opt $louvain_obj $combat_obj"
[ "$status" -eq 0 ]
[ -f "$combat_obj" ]
}
# Local Variables:
# mode: sh
# End: