-
Notifications
You must be signed in to change notification settings - Fork 3
/
raycond3-t-afhq.sh
19 lines (15 loc) · 1.22 KB
/
raycond3-t-afhq.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/bin/bash
#SBATCH -J AFHQ3 # Job name
#SBATCH -o AFHQ3.o # Name of stdout output file (%j expands to jobId)
#SBATCH -e AFHQ3.o # Name of stderr output file (%j expands to jobId)
#SBATCH -N 1 # Total number of nodes (physical machine) requested
#SBATCH -n 6 # Number of cores requested
#SBATCH --mem=30000 # Memory pool (MB)
#SBATCH -t 96:00:00 # Run time (hh:mm:ss)
#SBATCH --partition=snavely,cuvl,davis,gpu
#SBATCH --gres=gpu:a6000:2 # gpu:gpu_type:how_many_gpu
# below is the script that specifies all the commands to run
# or you could just add a single command
# e.g. echo "hello world!"
# better to use absolute path
python /share/phoenix/nfs04/S7/emc348/ray-conditioning/train.py --outdir=/share/phoenix/nfs04/S7/emc348/stylegan3/training-runs --data=/share/phoenix/nfs04/S7/emc348/nerf/eg3d/processed_afhq.zip --cfg=raycond3-t --gpus=2 --batch=32 --gamma=5 --snap=20 --cond=1 --aug=noaug --resume=/share/cuvl/emc348/pretrained_models/stylegan3-t-afhqv2-512x512.pkl