-
Notifications
You must be signed in to change notification settings - Fork 0
/
tree234.c
2216 lines (2015 loc) · 63.6 KB
/
tree234.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* tree234.c: reasonably generic counted 2-3-4 tree routines.
*
* This file is copyright 1999-2001 Simon Tatham.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "tree234.h"
#define smalloc malloc
#define sfree free
#define snew(typ) ( (typ *) smalloc (sizeof (typ)) )
#ifdef TEST
#define LOG(x) (printf x)
#else
#define LOG(x)
#endif
typedef struct node234_Tag node234;
struct tree234_Tag {
node234 *root;
cmpfn234 cmp;
void *cmpctx;
};
struct node234_Tag {
node234 *parent;
node234 *kids[4];
int counts[4];
void *elems[3];
};
/*
* Create a 2-3-4 tree.
*/
tree234 *newtree234(cmpfn234 cmp, void *cmpctx) {
tree234 *ret = snew(tree234);
LOG(("created tree %p\n", ret));
ret->root = NULL;
ret->cmp = cmp;
ret->cmpctx = cmpctx;
return ret;
}
/*
* Free a 2-3-4 tree (not including freeing the elements).
*/
static void freenode234(node234 *n) {
if (!n)
return;
freenode234(n->kids[0]);
freenode234(n->kids[1]);
freenode234(n->kids[2]);
freenode234(n->kids[3]);
sfree(n);
}
void freetree234(tree234 *t) {
freenode234(t->root);
sfree(t);
}
/*
* Internal function to count a node.
*/
static int countnode234(node234 *n) {
int count = 0;
int i;
if (!n)
return 0;
for (i = 0; i < 4; i++)
count += n->counts[i];
for (i = 0; i < 3; i++)
if (n->elems[i])
count++;
return count;
}
/*
* Count the elements in a tree.
*/
int count234(tree234 *t) {
if (t->root)
return countnode234(t->root);
else
return 0;
}
/*
* Propagate a node overflow up a tree until it stops. Returns 0 or
* 1, depending on whether the root had to be split or not.
*/
static int add234_insert(node234 *left, void *e, node234 *right,
node234 **root, node234 *n, int ki) {
int lcount, rcount;
/*
* We need to insert the new left/element/right set in n at
* child position ki.
*/
lcount = countnode234(left);
rcount = countnode234(right);
while (n) {
LOG((" at %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" need to insert %p/%d \"%s\" %p/%d at position %d\n",
left, lcount, e, right, rcount, ki));
if (n->elems[1] == NULL) {
/*
* Insert in a 2-node; simple.
*/
if (ki == 0) {
LOG((" inserting on left of 2-node\n"));
n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
n->elems[1] = n->elems[0];
n->kids[1] = right; n->counts[1] = rcount;
n->elems[0] = e;
n->kids[0] = left; n->counts[0] = lcount;
} else { /* ki == 1 */
LOG((" inserting on right of 2-node\n"));
n->kids[2] = right; n->counts[2] = rcount;
n->elems[1] = e;
n->kids[1] = left; n->counts[1] = lcount;
}
if (n->kids[0]) n->kids[0]->parent = n;
if (n->kids[1]) n->kids[1]->parent = n;
if (n->kids[2]) n->kids[2]->parent = n;
LOG((" done\n"));
break;
} else if (n->elems[2] == NULL) {
/*
* Insert in a 3-node; simple.
*/
if (ki == 0) {
LOG((" inserting on left of 3-node\n"));
n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
n->elems[2] = n->elems[1];
n->kids[2] = n->kids[1]; n->counts[2] = n->counts[1];
n->elems[1] = n->elems[0];
n->kids[1] = right; n->counts[1] = rcount;
n->elems[0] = e;
n->kids[0] = left; n->counts[0] = lcount;
} else if (ki == 1) {
LOG((" inserting in middle of 3-node\n"));
n->kids[3] = n->kids[2]; n->counts[3] = n->counts[2];
n->elems[2] = n->elems[1];
n->kids[2] = right; n->counts[2] = rcount;
n->elems[1] = e;
n->kids[1] = left; n->counts[1] = lcount;
} else { /* ki == 2 */
LOG((" inserting on right of 3-node\n"));
n->kids[3] = right; n->counts[3] = rcount;
n->elems[2] = e;
n->kids[2] = left; n->counts[2] = lcount;
}
if (n->kids[0]) n->kids[0]->parent = n;
if (n->kids[1]) n->kids[1]->parent = n;
if (n->kids[2]) n->kids[2]->parent = n;
if (n->kids[3]) n->kids[3]->parent = n;
LOG((" done\n"));
break;
} else {
node234 *m = snew(node234);
m->parent = n->parent;
LOG((" splitting a 4-node; created new node %p\n", m));
/*
* Insert in a 4-node; split into a 2-node and a
* 3-node, and move focus up a level.
*
* I don't think it matters which way round we put the
* 2 and the 3. For simplicity, we'll put the 3 first
* always.
*/
if (ki == 0) {
m->kids[0] = left; m->counts[0] = lcount;
m->elems[0] = e;
m->kids[1] = right; m->counts[1] = rcount;
m->elems[1] = n->elems[0];
m->kids[2] = n->kids[1]; m->counts[2] = n->counts[1];
e = n->elems[1];
n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
n->elems[0] = n->elems[2];
n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
} else if (ki == 1) {
m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
m->elems[0] = n->elems[0];
m->kids[1] = left; m->counts[1] = lcount;
m->elems[1] = e;
m->kids[2] = right; m->counts[2] = rcount;
e = n->elems[1];
n->kids[0] = n->kids[2]; n->counts[0] = n->counts[2];
n->elems[0] = n->elems[2];
n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
} else if (ki == 2) {
m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
m->elems[0] = n->elems[0];
m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
m->elems[1] = n->elems[1];
m->kids[2] = left; m->counts[2] = lcount;
/* e = e; */
n->kids[0] = right; n->counts[0] = rcount;
n->elems[0] = n->elems[2];
n->kids[1] = n->kids[3]; n->counts[1] = n->counts[3];
} else { /* ki == 3 */
m->kids[0] = n->kids[0]; m->counts[0] = n->counts[0];
m->elems[0] = n->elems[0];
m->kids[1] = n->kids[1]; m->counts[1] = n->counts[1];
m->elems[1] = n->elems[1];
m->kids[2] = n->kids[2]; m->counts[2] = n->counts[2];
n->kids[0] = left; n->counts[0] = lcount;
n->elems[0] = e;
n->kids[1] = right; n->counts[1] = rcount;
e = n->elems[2];
}
m->kids[3] = n->kids[3] = n->kids[2] = NULL;
m->counts[3] = n->counts[3] = n->counts[2] = 0;
m->elems[2] = n->elems[2] = n->elems[1] = NULL;
if (m->kids[0]) m->kids[0]->parent = m;
if (m->kids[1]) m->kids[1]->parent = m;
if (m->kids[2]) m->kids[2]->parent = m;
if (n->kids[0]) n->kids[0]->parent = n;
if (n->kids[1]) n->kids[1]->parent = n;
LOG((" left (%p): %p/%d \"%s\" %p/%d \"%s\" %p/%d\n", m,
m->kids[0], m->counts[0], m->elems[0],
m->kids[1], m->counts[1], m->elems[1],
m->kids[2], m->counts[2]));
LOG((" right (%p): %p/%d \"%s\" %p/%d\n", n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1]));
left = m; lcount = countnode234(left);
right = n; rcount = countnode234(right);
}
if (n->parent)
ki = (n->parent->kids[0] == n ? 0 :
n->parent->kids[1] == n ? 1 :
n->parent->kids[2] == n ? 2 : 3);
n = n->parent;
}
/*
* If we've come out of here by `break', n will still be
* non-NULL and all we need to do is go back up the tree
* updating counts. If we've come here because n is NULL, we
* need to create a new root for the tree because the old one
* has just split into two. */
if (n) {
while (n->parent) {
int count = countnode234(n);
int childnum;
childnum = (n->parent->kids[0] == n ? 0 :
n->parent->kids[1] == n ? 1 :
n->parent->kids[2] == n ? 2 : 3);
n->parent->counts[childnum] = count;
n = n->parent;
}
return 0; /* root unchanged */
} else {
LOG((" root is overloaded, split into two\n"));
(*root) = snew(node234);
(*root)->kids[0] = left; (*root)->counts[0] = lcount;
(*root)->elems[0] = e;
(*root)->kids[1] = right; (*root)->counts[1] = rcount;
(*root)->elems[1] = NULL;
(*root)->kids[2] = NULL; (*root)->counts[2] = 0;
(*root)->elems[2] = NULL;
(*root)->kids[3] = NULL; (*root)->counts[3] = 0;
(*root)->parent = NULL;
if ((*root)->kids[0]) (*root)->kids[0]->parent = (*root);
if ((*root)->kids[1]) (*root)->kids[1]->parent = (*root);
LOG((" new root is %p/%d \"%s\" %p/%d\n",
(*root)->kids[0], (*root)->counts[0],
(*root)->elems[0],
(*root)->kids[1], (*root)->counts[1]));
return 1; /* root moved */
}
}
/*
* Add an element e to a 2-3-4 tree t. Returns e on success, or if
* an existing element compares equal, returns that.
*/
static void *add234_internal(tree234 *t, void *e, int index) {
node234 *n;
int ki;
void *orig_e = e;
int c;
LOG(("adding element \"%s\" to tree %p\n", e, t));
if (t->root == NULL) {
t->root = snew(node234);
t->root->elems[1] = t->root->elems[2] = NULL;
t->root->kids[0] = t->root->kids[1] = NULL;
t->root->kids[2] = t->root->kids[3] = NULL;
t->root->counts[0] = t->root->counts[1] = 0;
t->root->counts[2] = t->root->counts[3] = 0;
t->root->parent = NULL;
t->root->elems[0] = e;
LOG((" created root %p\n", t->root));
return orig_e;
}
n = t->root;
while (n) {
LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
if (index >= 0) {
if (!n->kids[0]) {
/*
* Leaf node. We want to insert at kid position
* equal to the index:
*
* 0 A 1 B 2 C 3
*/
ki = index;
} else {
/*
* Internal node. We always descend through it (add
* always starts at the bottom, never in the
* middle).
*/
if (index <= n->counts[0]) {
ki = 0;
} else if (index -= n->counts[0] + 1, index <= n->counts[1]) {
ki = 1;
} else if (index -= n->counts[1] + 1, index <= n->counts[2]) {
ki = 2;
} else if (index -= n->counts[2] + 1, index <= n->counts[3]) {
ki = 3;
} else
return NULL; /* error: index out of range */
}
} else {
if ((c = t->cmp(e, n->elems[0], t->cmpctx)) < 0)
ki = 0;
else if (c == 0)
return n->elems[0]; /* already exists */
else if (n->elems[1] == NULL || (c = t->cmp(e, n->elems[1], t->cmpctx)) < 0)
ki = 1;
else if (c == 0)
return n->elems[1]; /* already exists */
else if (n->elems[2] == NULL || (c = t->cmp(e, n->elems[2], t->cmpctx)) < 0)
ki = 2;
else if (c == 0)
return n->elems[2]; /* already exists */
else
ki = 3;
}
LOG((" moving to child %d (%p)\n", ki, n->kids[ki]));
if (!n->kids[ki])
break;
n = n->kids[ki];
}
add234_insert(NULL, e, NULL, &t->root, n, ki);
return orig_e;
}
void *add234(tree234 *t, void *e) {
if (!t->cmp) /* tree is unsorted */
return NULL;
return add234_internal(t, e, -1);
}
void *addpos234(tree234 *t, void *e, int index) {
if (index < 0 || /* index out of range */
t->cmp) /* tree is sorted */
return NULL; /* return failure */
return add234_internal(t, e, index); /* this checks the upper bound */
}
/*
* Look up the element at a given numeric index in a 2-3-4 tree.
* Returns NULL if the index is out of range.
*/
void *index234(tree234 *t, int index) {
node234 *n;
if (!t->root)
return NULL; /* tree is empty */
if (index < 0 || index >= countnode234(t->root))
return NULL; /* out of range */
n = t->root;
while (n) {
if (index < n->counts[0])
n = n->kids[0];
else if (index -= n->counts[0] + 1, index < 0)
return n->elems[0];
else if (index < n->counts[1])
n = n->kids[1];
else if (index -= n->counts[1] + 1, index < 0)
return n->elems[1];
else if (index < n->counts[2])
n = n->kids[2];
else if (index -= n->counts[2] + 1, index < 0)
return n->elems[2];
else
n = n->kids[3];
}
/* We shouldn't ever get here. I wonder how we did. */
return NULL;
}
/*
* Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
* found. e is always passed as the first argument to cmp, so cmp
* can be an asymmetric function if desired. cmp can also be passed
* as NULL, in which case the compare function from the tree proper
* will be used.
*/
void *findcmprelpos234(tree234 *t, const void *e, cmpfn234 cmp, void *cmpctx,
int relation, int *index) {
node234 *n;
void *ret;
int c;
int idx, ecount, kcount, cmpret;
if (t->root == NULL)
return NULL;
n = t->root;
/*
* Attempt to find the element itself.
*/
idx = 0;
ecount = -1;
/*
* Prepare a fake `cmp' result if e is NULL.
*/
cmpret = 0;
if (e == NULL) {
assert(relation == REL234_LT || relation == REL234_GT);
if (relation == REL234_LT)
cmpret = +1; /* e is a max: always greater */
else if (relation == REL234_GT)
cmpret = -1; /* e is a min: always smaller */
}
while (1) {
for (kcount = 0; kcount < 4; kcount++) {
if (kcount >= 3 || n->elems[kcount] == NULL ||
(c = cmpret ? cmpret : cmp(e, n->elems[kcount], cmpctx)) < 0) {
break;
}
if (n->kids[kcount]) idx += n->counts[kcount];
if (c == 0) {
ecount = kcount;
break;
}
idx++;
}
if (ecount >= 0)
break;
if (n->kids[kcount])
n = n->kids[kcount];
else
break;
}
if (ecount >= 0) {
/*
* We have found the element we're looking for. It's
* n->elems[ecount], at tree index idx. If our search
* relation is EQ, LE or GE we can now go home.
*/
if (relation != REL234_LT && relation != REL234_GT) {
if (index) *index = idx;
return n->elems[ecount];
}
/*
* Otherwise, we'll do an indexed lookup for the previous
* or next element. (It would be perfectly possible to
* implement these search types in a non-counted tree by
* going back up from where we are, but far more fiddly.)
*/
if (relation == REL234_LT)
idx--;
else
idx++;
} else {
/*
* We've found our way to the bottom of the tree and we
* know where we would insert this node if we wanted to:
* we'd put it in in place of the (empty) subtree
* n->kids[kcount], and it would have index idx
*
* But the actual element isn't there. So if our search
* relation is EQ, we're doomed.
*/
if (relation == REL234_EQ)
return NULL;
/*
* Otherwise, we must do an index lookup for index idx-1
* (if we're going left - LE or LT) or index idx (if we're
* going right - GE or GT).
*/
if (relation == REL234_LT || relation == REL234_LE) {
idx--;
}
}
/*
* We know the index of the element we want; just call index234
* to do the rest. This will return NULL if the index is out of
* bounds, which is exactly what we want.
*/
ret = index234(t, idx);
if (ret && index) *index = idx;
return ret;
}
void *findcmp234(tree234 *t, const void *e, cmpfn234 cmp, void *cmpctx) {
return findcmprelpos234(t, e, cmp, cmpctx, REL234_EQ, NULL);
}
void *findcmprel234(tree234 *t, const void *e, cmpfn234 cmp, void *cmpctx,
int relation) {
return findcmprelpos234(t, e, cmp, cmpctx, relation, NULL);
}
void *findcmppos234(tree234 *t, const void *e, cmpfn234 cmp, void *cmpctx,
int *index) {
return findcmprelpos234(t, e, cmp, cmpctx, REL234_EQ, index);
}
void *find234(tree234 *t, const void *e) {
return findcmprelpos234(t, e, t->cmp, t->cmpctx, REL234_EQ, NULL);
}
void *findrel234(tree234 *t, const void *e, int relation) {
return findcmprelpos234(t, e, t->cmp, t->cmpctx, relation, NULL);
}
void *findpos234(tree234 *t, const void *e, int *index) {
return findcmprelpos234(t, e, t->cmp, t->cmpctx, REL234_EQ, index);
}
void *findrelpos234(tree234 *t, const void *e, int relation, int *index) {
return findcmprelpos234(t, e, t->cmp, t->cmpctx, relation, index);
}
/*
* Tree transformation used in delete and split: move a subtree
* right, from child ki of a node to the next child. Update k and
* index so that they still point to the same place in the
* transformed tree. Assumes the destination child is not full, and
* that the source child does have a subtree to spare. Can cope if
* the destination child is undersized.
*
* . C . . B .
* / \ -> / \
* [more] a A b B c d D e [more] a A b c C d D e
*
* . C . . B .
* / \ -> / \
* [more] a A b B c d [more] a A b c C d
*/
static void trans234_subtree_right(node234 *n, int ki, int *k, int *index) {
node234 *src, *dest;
int i, srclen, adjust;
src = n->kids[ki];
dest = n->kids[ki+1];
LOG((" trans234_subtree_right(%p, %d):\n", n, ki));
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
src,
src->kids[0], src->counts[0], src->elems[0],
src->kids[1], src->counts[1], src->elems[1],
src->kids[2], src->counts[2], src->elems[2],
src->kids[3], src->counts[3]));
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
dest,
dest->kids[0], dest->counts[0], dest->elems[0],
dest->kids[1], dest->counts[1], dest->elems[1],
dest->kids[2], dest->counts[2], dest->elems[2],
dest->kids[3], dest->counts[3]));
/*
* Move over the rest of the destination node to make space.
*/
dest->kids[3] = dest->kids[2]; dest->counts[3] = dest->counts[2];
dest->elems[2] = dest->elems[1];
dest->kids[2] = dest->kids[1]; dest->counts[2] = dest->counts[1];
dest->elems[1] = dest->elems[0];
dest->kids[1] = dest->kids[0]; dest->counts[1] = dest->counts[0];
/* which element to move over */
i = (src->elems[2] ? 2 : src->elems[1] ? 1 : 0);
dest->elems[0] = n->elems[ki];
n->elems[ki] = src->elems[i];
src->elems[i] = NULL;
dest->kids[0] = src->kids[i+1]; dest->counts[0] = src->counts[i+1];
src->kids[i+1] = NULL; src->counts[i+1] = 0;
if (dest->kids[0]) dest->kids[0]->parent = dest;
adjust = dest->counts[0] + 1;
n->counts[ki] -= adjust;
n->counts[ki+1] += adjust;
srclen = n->counts[ki];
if (k) {
LOG((" before: k,index = %d,%d\n", (*k), (*index)));
if ((*k) == ki && (*index) > srclen) {
(*index) -= srclen + 1;
(*k)++;
} else if ((*k) == ki+1) {
(*index) += adjust;
}
LOG((" after: k,index = %d,%d\n", (*k), (*index)));
}
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
src,
src->kids[0], src->counts[0], src->elems[0],
src->kids[1], src->counts[1], src->elems[1],
src->kids[2], src->counts[2], src->elems[2],
src->kids[3], src->counts[3]));
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
dest,
dest->kids[0], dest->counts[0], dest->elems[0],
dest->kids[1], dest->counts[1], dest->elems[1],
dest->kids[2], dest->counts[2], dest->elems[2],
dest->kids[3], dest->counts[3]));
}
/*
* Tree transformation used in delete and split: move a subtree
* left, from child ki of a node to the previous child. Update k
* and index so that they still point to the same place in the
* transformed tree. Assumes the destination child is not full, and
* that the source child does have a subtree to spare. Can cope if
* the destination child is undersized.
*
* . B . . C .
* / \ -> / \
* a A b c C d D e [more] a A b B c d D e [more]
*
* . A . . B .
* / \ -> / \
* a b B c C d [more] a A b c C d [more]
*/
static void trans234_subtree_left(node234 *n, int ki, int *k, int *index) {
node234 *src, *dest;
int i, adjust;
src = n->kids[ki];
dest = n->kids[ki-1];
LOG((" trans234_subtree_left(%p, %d):\n", n, ki));
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
dest,
dest->kids[0], dest->counts[0], dest->elems[0],
dest->kids[1], dest->counts[1], dest->elems[1],
dest->kids[2], dest->counts[2], dest->elems[2],
dest->kids[3], dest->counts[3]));
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
src,
src->kids[0], src->counts[0], src->elems[0],
src->kids[1], src->counts[1], src->elems[1],
src->kids[2], src->counts[2], src->elems[2],
src->kids[3], src->counts[3]));
/* where in dest to put it */
i = (dest->elems[1] ? 2 : dest->elems[0] ? 1 : 0);
dest->elems[i] = n->elems[ki-1];
n->elems[ki-1] = src->elems[0];
dest->kids[i+1] = src->kids[0]; dest->counts[i+1] = src->counts[0];
if (dest->kids[i+1]) dest->kids[i+1]->parent = dest;
/*
* Move over the rest of the source node.
*/
src->kids[0] = src->kids[1]; src->counts[0] = src->counts[1];
src->elems[0] = src->elems[1];
src->kids[1] = src->kids[2]; src->counts[1] = src->counts[2];
src->elems[1] = src->elems[2];
src->kids[2] = src->kids[3]; src->counts[2] = src->counts[3];
src->elems[2] = NULL;
src->kids[3] = NULL; src->counts[3] = 0;
adjust = dest->counts[i+1] + 1;
n->counts[ki] -= adjust;
n->counts[ki-1] += adjust;
if (k) {
LOG((" before: k,index = %d,%d\n", (*k), (*index)));
if ((*k) == ki) {
(*index) -= adjust;
if ((*index) < 0) {
(*index) += n->counts[ki-1] + 1;
(*k)--;
}
}
LOG((" after: k,index = %d,%d\n", (*k), (*index)));
}
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" dest %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
dest,
dest->kids[0], dest->counts[0], dest->elems[0],
dest->kids[1], dest->counts[1], dest->elems[1],
dest->kids[2], dest->counts[2], dest->elems[2],
dest->kids[3], dest->counts[3]));
LOG((" src %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
src,
src->kids[0], src->counts[0], src->elems[0],
src->kids[1], src->counts[1], src->elems[1],
src->kids[2], src->counts[2], src->elems[2],
src->kids[3], src->counts[3]));
}
/*
* Tree transformation used in delete and split: merge child nodes
* ki and ki+1 of a node. Update k and index so that they still
* point to the same place in the transformed tree. Assumes both
* children _are_ sufficiently small.
*
* . B . .
* / \ -> |
* a A b c C d a A b B c C d
*
* This routine can also cope with either child being undersized:
*
* . A . .
* / \ -> |
* a b B c a A b B c
*
* . A . .
* / \ -> |
* a b B c C d a A b B c C d
*/
static void trans234_subtree_merge(node234 *n, int ki, int *k, int *index) {
node234 *left, *right;
int i, leftlen, rightlen, lsize, rsize;
left = n->kids[ki]; leftlen = n->counts[ki];
right = n->kids[ki+1]; rightlen = n->counts[ki+1];
LOG((" trans234_subtree_merge(%p, %d):\n", n, ki));
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" left %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
left,
left->kids[0], left->counts[0], left->elems[0],
left->kids[1], left->counts[1], left->elems[1],
left->kids[2], left->counts[2], left->elems[2],
left->kids[3], left->counts[3]));
LOG((" right %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
right,
right->kids[0], right->counts[0], right->elems[0],
right->kids[1], right->counts[1], right->elems[1],
right->kids[2], right->counts[2], right->elems[2],
right->kids[3], right->counts[3]));
assert(!left->elems[2] && !right->elems[2]); /* neither is large! */
lsize = (left->elems[1] ? 2 : left->elems[0] ? 1 : 0);
rsize = (right->elems[1] ? 2 : right->elems[0] ? 1 : 0);
left->elems[lsize] = n->elems[ki];
for (i = 0; i < rsize+1; i++) {
left->kids[lsize+1+i] = right->kids[i];
left->counts[lsize+1+i] = right->counts[i];
if (left->kids[lsize+1+i])
left->kids[lsize+1+i]->parent = left;
if (i < rsize)
left->elems[lsize+1+i] = right->elems[i];
}
n->counts[ki] += rightlen + 1;
sfree(right);
/*
* Move the rest of n up by one.
*/
for (i = ki+1; i < 3; i++) {
n->kids[i] = n->kids[i+1];
n->counts[i] = n->counts[i+1];
}
for (i = ki; i < 2; i++) {
n->elems[i] = n->elems[i+1];
}
n->kids[3] = NULL;
n->counts[3] = 0;
n->elems[2] = NULL;
if (k) {
LOG((" before: k,index = %d,%d\n", (*k), (*index)));
if ((*k) == ki+1) {
(*k)--;
(*index) += leftlen + 1;
} else if ((*k) > ki+1) {
(*k)--;
}
LOG((" after: k,index = %d,%d\n", (*k), (*index)));
}
LOG((" parent %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3]));
LOG((" merged %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d\n",
left,
left->kids[0], left->counts[0], left->elems[0],
left->kids[1], left->counts[1], left->elems[1],
left->kids[2], left->counts[2], left->elems[2],
left->kids[3], left->counts[3]));
}
/*
* Delete an element e in a 2-3-4 tree. Does not free the element,
* merely removes all links to it from the tree nodes.
*/
static void *delpos234_internal(tree234 *t, int index) {
node234 *n;
void *retval;
int ki, i;
retval = NULL;
n = t->root; /* by assumption this is non-NULL */
LOG(("deleting item %d from tree %p\n", index, t));
while (1) {
node234 *sub;
LOG((" node %p: %p/%d \"%s\" %p/%d \"%s\" %p/%d \"%s\" %p/%d index=%d\n",
n,
n->kids[0], n->counts[0], n->elems[0],
n->kids[1], n->counts[1], n->elems[1],
n->kids[2], n->counts[2], n->elems[2],
n->kids[3], n->counts[3],
index));
if (index <= n->counts[0]) {
ki = 0;
} else if (index -= n->counts[0]+1, index <= n->counts[1]) {
ki = 1;
} else if (index -= n->counts[1]+1, index <= n->counts[2]) {
ki = 2;
} else if (index -= n->counts[2]+1, index <= n->counts[3]) {
ki = 3;
} else {
assert(0); /* can't happen */
}
if (!n->kids[0])
break; /* n is a leaf node; we're here! */
/*
* Check to see if we've found our target element. If so,
* we must choose a new target (we'll use the old target's
* successor, which will be in a leaf), move it into the
* place of the old one, continue down to the leaf and
* delete the old copy of the new target.
*/
if (index == n->counts[ki]) {
node234 *m;
LOG((" found element in internal node, index %d\n", ki));
assert(n->elems[ki]); /* must be a kid _before_ an element */
ki++; index = 0;
for (m = n->kids[ki]; m->kids[0]; m = m->kids[0])
continue;
LOG((" replacing with element \"%s\" from leaf node %p\n",
m->elems[0], m));
retval = n->elems[ki-1];
n->elems[ki-1] = m->elems[0];
}
/*
* Recurse down to subtree ki. If it has only one element,
* we have to do some transformation to start with.
*/
LOG((" moving to subtree %d\n", ki));
sub = n->kids[ki];
if (!sub->elems[1]) {
LOG((" subtree has only one element!\n"));
if (ki > 0 && n->kids[ki-1]->elems[1]) {
/*
* Child ki has only one element, but child
* ki-1 has two or more. So we need to move a
* subtree from ki-1 to ki.
*/
trans234_subtree_right(n, ki-1, &ki, &index);
} else if (ki < 3 && n->kids[ki+1] &&
n->kids[ki+1]->elems[1]) {
/*
* Child ki has only one element, but ki+1 has
* two or more. Move a subtree from ki+1 to ki.
*/
trans234_subtree_left(n, ki+1, &ki, &index);
} else {
/*
* ki is small with only small neighbours. Pick a
* neighbour and merge with it.
*/
trans234_subtree_merge(n, ki>0 ? ki-1 : ki, &ki, &index);
sub = n->kids[ki];
if (!n->elems[0]) {
/*
* The root is empty and needs to be
* removed.
*/
LOG((" shifting root!\n"));
t->root = sub;
sub->parent = NULL;
sfree(n);
n = NULL;
}
}
}
if (n)
n->counts[ki]--;
n = sub;
}
/*
* Now n is a leaf node, and ki marks the element number we
* want to delete. We've already arranged for the leaf to be
* bigger than minimum size, so let's just go to it.
*/
assert(!n->kids[0]);
if (!retval)
retval = n->elems[ki];
for (i = ki; i < 2 && n->elems[i+1]; i++)
n->elems[i] = n->elems[i+1];
n->elems[i] = NULL;