-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsyntheticDataMaker.py
executable file
·96 lines (74 loc) · 3.46 KB
/
syntheticDataMaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/python
import sys
from numpy.random import randn
from numpy.linalg import qr
from numpy import exp, ones, dot, zeros, array
class SyntheticDataMaker:
def __init__(self):
self.wasInitForMake = False
def initBeforeMake(self, dimension, \
signal_dimension=0, \
signal_to_noise_ratio=0,\
signal_singular_value_decay_factor=0, \
signal_singular_value_decay_type='exp'):
self.dimension = dimension
self.signal_dimension = signal_dimension
self.signal_to_noise_ratio = signal_to_noise_ratio
self.signal_singular_value_decay_factor = signal_singular_value_decay_factor
self.signal_singular_value_decay_type = signal_singular_value_decay_type
# setting a random singular space
[Q,R] = qr( randn(self.dimension, self.signal_dimension) )
self.signal_row_space = Q.transpose()
del Q,R
# setting the singular values
eta = self.signal_singular_value_decay_factor
if self.signal_singular_value_decay_type == 'exp':
self.signal_singular_values = [exp(-10*eta*i/self.signal_dimension) for i in xrange(self.signal_dimension)]
elif self.signal_singular_value_decay_type == 'lin':
self.signal_singular_values = [max(1.0 - eta*float(i)/self.signal_dimension,0.0) for i in xrange(self.signal_dimension)]
else:
self.signal_singular_values = ones(self.signal_dimension)
# done initializing
self.wasInitForMake = True
def makeRow(self):
if not self.wasInitForMake:
sys.stderr.write('ERROR: must run initBeforeMake(...) before makeRow()')
return
noise = randn(self.dimension)
signal_coeffs = randn(self.signal_dimension)
signal = dot(self.signal_singular_values * signal_coeffs, self.signal_row_space)
return signal + noise/self.signal_to_noise_ratio
def makeMatrix(self, n):
matrix = zeros((n, self.dimension))
for i in xrange(n):
matrix[i,:] = self.makeRow()
return matrix
def getSignalRowSpace(self):
return self.signal_row_space
def __vector_to_string__(self,v):
s = '%s\n'%(','.join('%.2E'%x for x in v.flatten()))
return s
def __vector_from_string(self,s):
v = array([float(x) for x in s.strip('\n').split(',')])
return v
def readFromFileIter(self,f=sys.stdin):
for line in f:
yield self.__vector_from_string(line)
def writeToFile(self, v, f=sys.stdout):
f.write(self.__vector_to_string__(v))
def writeToFileIter(self, vs, f=sys.stdout):
for v in vs:
f.write(self.__vector_to_string__(v))
if __name__=='__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-n', type=int, default=100, help='number of rows in matrix')
parser.add_argument('-d', type=int, default=10, help='dimension of row vectors (number of columns in matrix)')
parser.add_argument('-k', type=int, default=5, help='the rank of the signal')
parser.add_argument('-snr', type=float, default=10.0, help='signal to noise ratio')
args = parser.parse_args()
sdn = SyntheticDataMaker()
sdn.initBeforeMake(args.d, args.k, args.snr)
for i in xrange(args.n):
row = sdn.makeRow()
sdn.writeToFile(row)