-
Notifications
You must be signed in to change notification settings - Fork 22
/
S2LatLngRect.php
711 lines (643 loc) · 26.6 KB
/
S2LatLngRect.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
<?php
class S2LatLngRect implements S2Region {
/** @var \R1Interval */
private $lat;
/** @var \S1Interval */
private $lng;
/**
* Construct a rectangle from minimum and maximum latitudes and longitudes. If
* lo.lng() > hi.lng(), the rectangle spans the 180 degree longitude line.
*/
public function __construct($lo, $hi) {
if ($lo instanceof S2LatLng && $hi instanceof S2LatLng) {
$this->lat = new R1Interval($lo->lat()->radians(), $hi->lat()->radians());
$this->lng = new S1Interval($lo->lng()->radians(), $hi->lng()->radians());
} else if ($lo instanceof R1Interval && $hi instanceof S1Interval) {
$this->lat = $lo;
$this->lng = $hi;
}
// assert (isValid());
}
/** The canonical empty rectangle */
public static function emptya() {
return new S2LatLngRect(R1Interval::emptya(), S1Interval::emptya());
}
/** The canonical full rectangle. */
public static function full() {
return new S2LatLngRect(self::fullLat(), self::fullLng());
}
/** The full allowable range of latitudes. */
public static function fullLat() {
return new R1Interval(-S2::M_PI_2, S2::M_PI_2);
}
/**
* The full allowable range of longitudes.
*/
// public static S1Interval fullLng() {
// return S1Interval.full();
// }
/**
* Construct a rectangle from a center point (in lat-lng space) and size in
* each dimension. If size.lng() is greater than 360 degrees it is clamped,
* and latitudes greater than +/- 90 degrees are also clamped. So for example,
* FromCenterSize((80,170),(20,20)) -> (lo=(60,150),hi=(90,-170)).
* @return S2LatLngRect
*/
public static function fromCenterSize(S2LatLng $center, S2LatLng $size) {
return self::fromPoint($center)->expanded($size->mul(0.5));
}
/** Convenience method to construct a rectangle containing a single point. */
public static function fromPoint(S2LatLng $p) {
// assert (p.isValid());
return new S2LatLngRect($p, $p);
}
/**
* Convenience method to construct the minimal bounding rectangle containing
* the two given points. This is equivalent to starting with an empty
* rectangle and calling AddPoint() twice. Note that it is different than the
* S2LatLngRect(lo, hi) constructor, where the first point is always used as
* the lower-left corner of the resulting rectangle.
*/
// public static S2LatLngRect fromPointPair(S2LatLng p1, S2LatLng p2) {
// assert (p1.isValid() && p2.isValid());
// return new S2LatLngRect(R1Interval.fromPointPair(p1.lat().radians(), p2
// .lat().radians()), S1Interval.fromPointPair(p1.lng().radians(), p2.lng()
// .radians()));
// }
/**
* Return a latitude-longitude rectangle that contains the edge from "a" to
* "b". Both points must be unit-length. Note that the bounding rectangle of
* an edge can be larger than the bounding rectangle of its endpoints.
*/
// public static S2LatLngRect fromEdge(S2Point a, S2Point b) {
// assert (S2.isUnitLength(a) && S2.isUnitLength(b));
// S2LatLngRect r = fromPointPair(new S2LatLng(a), new S2LatLng(b));
// Check whether the min/max latitude occurs in the edge interior.
// We find the normal to the plane containing AB, and then a vector "dir" in
// this plane that also passes through the equator. We use RobustCrossProd
// to ensure that the edge normal is accurate even when the two points are
// very close together.
// S2Point ab = S2.robustCrossProd(a, b);
// S2Point dir = S2Point.crossProd(ab, new S2Point(0, 0, 1));
// double da = dir.dotProd(a);
// double db = dir.dotProd(b);
// if (da * db >= 0) {
// Minimum and maximum latitude are attained at the vertices.
// return r;
// }
// Minimum/maximum latitude occurs in the edge interior. This affects the
// latitude bounds but not the longitude bounds.
// double absLat = Math.acos(Math.abs(ab.z / ab.norm()));
// if (da < 0) {
// return new S2LatLngRect(new R1Interval(r.lat().lo(), absLat), r.lng());
// } else {
// return new S2LatLngRect(new R1Interval(-absLat, r.lat().hi()), r.lng());
// }
// }
/**
* Return true if the rectangle is valid, which essentially just means that
* the latitude bounds do not exceed Pi/2 in absolute value and the longitude
* bounds do not exceed Pi in absolute value.
*
*/
// public boolean isValid() {
// The lat/lng ranges must either be both empty or both non-empty.
// return (Math.abs(lat.lo()) <= S2.M_PI_2 && Math.abs(lat.hi()) <= S2.M_PI_2
// && lng.isValid() && lat.isEmpty() == lng.isEmpty());
// }
// Accessor methods.
public function latLo() {
return S1Angle::sradians($this->lat->lo());
}
public function latHi() {
return S1Angle::sradians($this->lat->hi());
}
public function lngLo() {
return S1Angle::sradians($this->lng->lo());
}
public function lngHi() {
return S1Angle::sradians($this->lng->hi());
}
// public R1Interval lat() {
// return lat;
// }
// public S1Interval lng() {
// return lng;
// }
public function lo() {
return new S2LatLng($this->latLo(), $this->lngLo());
}
public function hi() {
return new S2LatLng($this->latHi(), $this->lngHi());
}
/**
* Return true if the rectangle is empty, i.e. it contains no points at all.
*/
public function isEmpty() {
return $this->lat->isEmpty();
}
// Return true if the rectangle is full, i.e. it contains all points.
// public boolean isFull() {
// return lat.equals(fullLat()) && lng.isFull();
// }
/**
* Return true if lng_.lo() > lng_.hi(), i.e. the rectangle crosses the 180
* degree latitude line.
*/
// public boolean isInverted() {
// return lng.isInverted();
// }
/** Return the k-th vertex of the rectangle (k = 0,1,2,3) in CCW order. */
public function getVertex($k) {
// Return the points in CCW order (SW, SE, NE, NW).
switch ($k) {
case 0:
return S2LatLng::fromRadians($this->lat->lo(), $this->lng->lo());
case 1:
return S2LatLng::fromRadians($this->lat->lo(), $this->lng->hi());
case 2:
return S2LatLng::fromRadians($this->lat->hi(), $this->lng->hi());
case 3:
return S2LatLng::fromRadians($this->lat->hi(), $this->lng->lo());
default:
throw new IllegalArgumentException("Invalid vertex index.");
}
}
/**
* Return the center of the rectangle in latitude-longitude space (in general
* this is not the center of the region on the sphere).
*/
public function getCenter() {
return S2LatLng::fromRadians($this->lat->getCenter(), $this->lng->getCenter());
}
/**
* Return the minimum distance (measured along the surface of the sphere)
* from a given point to the rectangle (both its boundary and its interior).
* The latLng must be valid.
*/
// public S1Angle getDistance(S2LatLng p) {
// The algorithm here is the same as in getDistance(S2LagLngRect), only
// with simplified calculations.
// S2LatLngRect a = this;
// Preconditions.checkState(!a.isEmpty());
// Preconditions.checkArgument(p.isValid());
// if (a.lng().contains(p.lng().radians())) {
// return S1Angle.radians(Math.max(0.0, Math.max(p.lat().radians() - a.lat().hi(),
// a.lat().lo() - p.lat().radians())));
// }
// S1Interval interval = new S1Interval(a.lng().hi(), a.lng().complement().getCenter());
// double aLng = a.lng().lo();
// if (interval.contains(p.lng().radians())) {
// aLng = a.lng().hi();
// }
// S2Point lo = S2LatLng.fromRadians(a.lat().lo(), aLng).toPoint();
// S2Point hi = S2LatLng.fromRadians(a.lat().hi(), aLng).toPoint();
// S2Point loCrossHi =
// S2LatLng.fromRadians(0, aLng - S2.M_PI_2).normalized().toPoint();
// return S2EdgeUtil.getDistance(p.toPoint(), lo, hi, loCrossHi);
// }
/**
* Return the minimum distance (measured along the surface of the sphere) to
* the given S2LatLngRect. Both S2LatLngRects must be non-empty.
*/
// public S1Angle getDistance(S2LatLngRect other) {
// S2LatLngRect a = this;
// S2LatLngRect b = other;
// Preconditions.checkState(!a.isEmpty());
// Preconditions.checkArgument(!b.isEmpty());
// First, handle the trivial cases where the longitude intervals overlap.
// if (a.lng().intersects(b.lng())) {
// if (a.lat().intersects(b.lat())) {
// return S1Angle.radians(0); // Intersection between a and b.
// }
// We found an overlap in the longitude interval, but not in the latitude
// interval. This means the shortest path travels along some line of
// longitude connecting the high-latitude of the lower rect with the
// low-latitude of the higher rect.
// S1Angle lo, hi;
// if (a.lat().lo() > b.lat().hi()) {
// lo = b.latHi();
// hi = a.latLo();
// } else {
// lo = a.latHi();
// hi = b.latLo();
// }
// return S1Angle.radians(hi.radians() - lo.radians());
// }
// The longitude intervals don't overlap. In this case, the closest points
// occur somewhere on the pair of longitudinal edges which are nearest in
// longitude-space.
// S1Angle aLng, bLng;
// S1Interval loHi = S1Interval.fromPointPair(a.lng().lo(), b.lng().hi());
// S1Interval hiLo = S1Interval.fromPointPair(a.lng().hi(), b.lng().lo());
// if (loHi.getLength() < hiLo.getLength()) {
// aLng = a.lngLo();
// bLng = b.lngHi();
// } else {
// aLng = a.lngHi();
// bLng = b.lngLo();
// }
// The shortest distance between the two longitudinal segments will include
// at least one segment endpoint. We could probably narrow this down further
// to a single point-edge distance by comparing the relative latitudes of the
// endpoints, but for the sake of clarity, we'll do all four point-edge
// distance tests.
// S2Point aLo = new S2LatLng(a.latLo(), aLng).toPoint();
// S2Point aHi = new S2LatLng(a.latHi(), aLng).toPoint();
// S2Point aLoCrossHi =
// S2LatLng.fromRadians(0, aLng.radians() - S2.M_PI_2).normalized().toPoint();
// S2Point bLo = new S2LatLng(b.latLo(), bLng).toPoint();
// S2Point bHi = new S2LatLng(b.latHi(), bLng).toPoint();
// S2Point bLoCrossHi =
// S2LatLng.fromRadians(0, bLng.radians() - S2.M_PI_2).normalized().toPoint();
// return S1Angle.min(S2EdgeUtil.getDistance(aLo, bLo, bHi, bLoCrossHi),
// S1Angle.min(S2EdgeUtil.getDistance(aHi, bLo, bHi, bLoCrossHi),
// S1Angle.min(S2EdgeUtil.getDistance(bLo, aLo, aHi, aLoCrossHi),
// S2EdgeUtil.getDistance(bHi, aLo, aHi, aLoCrossHi))));
// }
/**
* Return the width and height of this rectangle in latitude-longitude space.
* Empty rectangles have a negative width and height.
*/
// public S2LatLng getSize() {
// return S2LatLng.fromRadians(lat.getLength(), lng.getLength());
// }
/**
* More efficient version of Contains() that accepts a S2LatLng rather than an
* S2Point.
*/
public function contains($ll) {
if ($ll instanceof S2LatLng) {
return ($this->lat->contains($ll->lat()->radians()) && $this->lng->contains($ll->lng()->radians()));
} else if ($ll instanceof S2LatLngRect) {
return lat . contains($ll . lat) && lng . contains($ll . lng);
} else if ($ll instanceof S2Cell) {
return $this->contains($cell->getRectBound());
} else if ($ll instanceof S2Point) {
return contains(new S2LatLng(p));
}
}
/**
* Return true if and only if the given point is contained in the interior of
* the region (i.e. the region excluding its boundary). The point 'p' does not
* need to be normalized.
*/
// public boolean interiorContains(S2Point p) {
// return interiorContains(new S2LatLng(p));
// }
/**
* More efficient version of InteriorContains() that accepts a S2LatLng rather
* than an S2Point.
*/
// public boolean interiorContains(S2LatLng ll) {
// assert (ll.isValid());
// return (lat.interiorContains(ll.lat().radians()) && lng
// .interiorContains(ll.lng().radians()));
// }
/**
* Return true if and only if the interior of this rectangle contains all
* points of the given other rectangle (including its boundary).
*/
// public boolean interiorContains(S2LatLngRect other) {
// return (lat.interiorContains(other.lat) && lng
// .interiorContains(other.lng));
// }
/** Return true if this rectangle and the given other rectangle have any
* points in common. */
public function intersects(S2LatLngRect $other) {
$latInt = $this->lat->intersects($other->lat);
$lngInt = $this->lng->intersects($other->lng);
// echo var_export($latInt, true) . ' ' . var_export($lngInt, true) . "\n";
return $latInt && $lngInt;
}
/**
* Returns true if this rectangle intersects the given cell. (This is an exact
* test and may be fairly expensive, see also MayIntersect below.)
*/
/* public boolean intersects(S2Cell cell) {
// First we eliminate the cases where one region completely contains the
// other. Once these are disposed of, then the regions will intersect
// if and only if their boundaries intersect.
if (isEmpty()) {
return false;
}
if (contains(cell.getCenter())) {
return true;
}
if (cell.contains(getCenter().toPoint())) {
return true;
}
// Quick rejection test (not required for correctness).
if (!intersects(cell.getRectBound())) {
return false;
}
// Now check whether the boundaries intersect. Unfortunately, a
// latitude-longitude rectangle does not have straight edges -- two edges
// are curved, and at least one of them is concave.
// Precompute the cell vertices as points and latitude-longitudes.
S2Point[] cellV = new S2Point[4];
S2LatLng[] cellLl = new S2LatLng[4];
for (int i = 0; i < 4; ++i) {
cellV[i] = cell.getVertex(i); // Must be normalized.
cellLl[i] = new S2LatLng(cellV[i]);
if (contains(cellLl[i])) {
return true; // Quick acceptance test.
}
}
for (int i = 0; i < 4; ++i) {
S1Interval edgeLng = S1Interval.fromPointPair(
cellLl[i].lng().radians(), cellLl[(i + 1) & 3].lng().radians());
if (!lng.intersects(edgeLng)) {
continue;
}
final S2Point a = cellV[i];
final S2Point b = cellV[(i + 1) & 3];
if (edgeLng.contains(lng.lo())) {
if (intersectsLngEdge(a, b, lat, lng.lo())) {
return true;
}
}
if (edgeLng.contains(lng.hi())) {
if (intersectsLngEdge(a, b, lat, lng.hi())) {
return true;
}
}
if (intersectsLatEdge(a, b, lat.lo(), lng)) {
return true;
}
if (intersectsLatEdge(a, b, lat.hi(), lng)) {
return true;
}
}
return false;
}
*/
/**
* Return true if and only if the interior of this rectangle intersects any
* point (including the boundary) of the given other rectangle.
*/
// public boolean interiorIntersects(S2LatLngRect other) {
// return (lat.interiorIntersects(other.lat) && lng
// .interiorIntersects(other.lng));
// }
// public S2LatLngRect addPoint(S2Point p) {
// return addPoint(new S2LatLng(p));
// }
// Increase the size of the bounding rectangle to include the given point.
// The rectangle is expanded by the minimum amount possible.
// public S2LatLngRect addPoint(S2LatLng ll) {
// assert (ll.isValid());
// R1Interval newLat = lat.addPoint(ll.lat().radians());
// S1Interval newLng = lng.addPoint(ll.lng().radians());
// return new S2LatLngRect(newLat, newLng);
// }
/**
* Return a rectangle that contains all points whose latitude distance from
* this rectangle is at most margin.lat(), and whose longitude distance from
* this rectangle is at most margin.lng(). In particular, latitudes are
* clamped while longitudes are wrapped. Note that any expansion of an empty
* interval remains empty, and both components of the given margin must be
* non-negative.
*
* NOTE: If you are trying to grow a rectangle by a certain *distance* on the
* sphere (e.g. 5km), use the ConvolveWithCap() method instead.
* @return S2LatLngRect
*/
public function expanded(S2LatLng $margin) {
// assert (margin.lat().radians() >= 0 && margin.lng().radians() >= 0);
if ($this->isEmpty()) {
return $this;
}
return new S2LatLngRect(
$this->lat->expanded($margin->lat()->radians())->intersection($this->fullLat()),
$this->lng->expanded($margin->lng()->radians())
);
}
/**
* Return the smallest rectangle containing the union of this rectangle and
* the given rectangle.
*/
// public S2LatLngRect union(S2LatLngRect other) {
// return new S2LatLngRect(lat.union(other.lat), lng.union(other.lng));
// }
/**
* Return the smallest rectangle containing the intersection of this rectangle
* and the given rectangle. Note that the region of intersection may consist
* of two disjoint rectangles, in which case a single rectangle spanning both
* of them is returned.
*#/
* public S2LatLngRect intersection(S2LatLngRect other) {
* R1Interval intersectLat = lat.intersection(other.lat);
* S1Interval intersectLng = lng.intersection(other.lng);
* if (intersectLat.isEmpty() || intersectLng.isEmpty()) {
* // The lat/lng ranges must either be both empty or both non-empty.
* return empty();
* }
* return new S2LatLngRect(intersectLat, intersectLng);
* }
*
* /**
* Return a rectangle that contains the convolution of this rectangle with a
* cap of the given angle. This expands the rectangle by a fixed distance (as
* opposed to growing the rectangle in latitude-longitude space). The returned
* rectangle includes all points whose minimum distance to the original
* rectangle is at most the given angle.
*#/
* public S2LatLngRect convolveWithCap(S1Angle angle) {
* // The most straightforward approach is to build a cap centered on each
* // vertex and take the union of all the bounding rectangles (including the
* // original rectangle; this is necessary for very large rectangles).
*
* // Optimization: convert the angle to a height exactly once.
* S2Cap cap = S2Cap.fromAxisAngle(new S2Point(1, 0, 0), angle);
*
* S2LatLngRect r = this;
* for (int k = 0; k < 4; ++k) {
* S2Cap vertexCap = S2Cap.fromAxisHeight(getVertex(k).toPoint(), cap
* .height());
* r = r.union(vertexCap.getRectBound());
* }
* return r;
* }
*
* /** Return the surface area of this rectangle on the unit sphere. *#/
* public double area() {
* if (isEmpty()) {
* return 0;
* }
*
* // This is the size difference of the two spherical caps, multiplied by
* // the longitude ratio.
* return lng().getLength() * Math.abs(Math.sin(latHi().radians()) - Math.sin(latLo().radians()));
* }
*
* /** Return true if two rectangles contains the same set of points. *#/
* @Override
* public boolean equals(Object that) {
* if (!(that instanceof S2LatLngRect)) {
* return false;
* }
* S2LatLngRect otherRect = (S2LatLngRect) that;
* return lat().equals(otherRect.lat()) && lng().equals(otherRect.lng());
* }
*
* /**
* Return true if the latitude and longitude intervals of the two rectangles
* are the same up to the given tolerance (see r1interval.h and s1interval.h
* for details).
*#/
* public boolean approxEquals(S2LatLngRect other, double maxError) {
* return (lat.approxEquals(other.lat, maxError) && lng.approxEquals(
* other.lng, maxError));
* }
*
* public boolean approxEquals(S2LatLngRect other) {
* return approxEquals(other, 1e-15);
* }
*
* @Override
* public int hashCode() {
* int value = 17;
* value = 37 * value + lat.hashCode();
* return (37 * value + lng.hashCode());
* }
*
* // //////////////////////////////////////////////////////////////////////
* // S2Region interface (see {@code S2Region} for details):
*
* @Override
* public S2Region clone() {
* return new S2LatLngRect(this.lo(), this.hi());
* }
*/
public function getCapBound() {
// We consider two possible bounding caps, one whose axis passes
// through the center of the lat-long rectangle and one whose axis
// is the north or south pole. We return the smaller of the two caps.
if ($this->isEmpty()) {
echo __METHOD__ . " empty\n";
return S2Cap::sempty();
}
$poleZ = null;
$poleAngle = null;
if ($this->lat->lo() + $this->lat->hi() < 0) {
// South pole axis yields smaller cap.
$poleZ = -1;
$poleAngle = S2::M_PI_2 + $this->lat->hi();
} else {
$poleZ = 1;
$poleAngle = S2::M_PI_2 - $this->lat->lo();
}
$poleCap = S2Cap::fromAxisAngle(new S2Point(0, 0, $poleZ), S1Angle::sradians($poleAngle));
// For bounding rectangles that span 180 degrees or less in longitude, the
// maximum cap size is achieved at one of the rectangle vertices. For
// rectangles that are larger than 180 degrees, we punt and always return a
// bounding cap centered at one of the two poles.
$lngSpan = $this->lng->hi() - $this->lng->lo();
if (S2::IEEEremainder($lngSpan, 2 * S2::M_PI) >= 0) {
if ($lngSpan < 2 * S2::M_PI) {
$midCap = S2Cap::fromAxisAngle($this->getCenter()->toPoint(), S1Angle::sradians(0));
for ($k = 0; $k < 4; ++$k) {
$midCap = $midCap->addPoint($this->getVertex($k)->toPoint());
}
if ($midCap->height() < $poleCap->height()) {
return $midCap;
}
}
}
return $poleCap;
}
public function getRectBound() {
return $this;
}
/**
* This test is cheap but is NOT exact. Use Intersects() if you want a more
* accurate and more expensive test. Note that when this method is used by an
* S2RegionCoverer, the accuracy isn't all that important since if a cell may
* intersect the region then it is subdivided, and the accuracy of this method
* goes up as the cells get smaller.
*/
public function mayIntersect(S2Cell $cell) {
// This test is cheap but is NOT exact (see s2latlngrect.h).
$rb = $cell->getRectBound();
// echo __METHOD__ . $cell . ' ' . $rb . "\n";
return $this->intersects($rb);
}
/**
* Return true if the edge AB intersects the given edge of constant longitude.
*#/
* private static boolean intersectsLngEdge(S2Point a, S2Point b,
* R1Interval lat, double lng) {
* // Return true if the segment AB intersects the given edge of constant
* // longitude. The nice thing about edges of constant longitude is that
* // they are straight lines on the sphere (geodesics).
*
* return S2.simpleCrossing(a, b, S2LatLng.fromRadians(lat.lo(), lng)
* .toPoint(), S2LatLng.fromRadians(lat.hi(), lng).toPoint());
* }
*
* /**
* Return true if the edge AB intersects the given edge of constant latitude.
*#/
* private static boolean intersectsLatEdge(S2Point a, S2Point b, double lat,
* S1Interval lng) {
* // Return true if the segment AB intersects the given edge of constant
* // latitude. Unfortunately, lines of constant latitude are curves on
* // the sphere. They can intersect a straight edge in 0, 1, or 2 points.
* // assert (S2.isUnitLength(a) && S2.isUnitLength(b));
*
* // First, compute the normal to the plane AB that points vaguely north.
* S2Point z = S2Point.normalize(S2.robustCrossProd(a, b));
* if (z.z < 0) {
* z = S2Point.neg(z);
* }
*
* // Extend this to an orthonormal frame (x,y,z) where x is the direction
* // where the great circle through AB achieves its maximium latitude.
* S2Point y = S2Point.normalize(S2.robustCrossProd(z, new S2Point(0, 0, 1)));
* S2Point x = S2Point.crossProd(y, z);
* // assert (S2.isUnitLength(x) && x.z >= 0);
*
* // Compute the angle "theta" from the x-axis (in the x-y plane defined
* // above) where the great circle intersects the given line of latitude.
* double sinLat = Math.sin(lat);
* if (Math.abs(sinLat) >= x.z) {
* return false; // The great circle does not reach the given latitude.
* }
* // assert (x.z > 0);
* double cosTheta = sinLat / x.z;
* double sinTheta = Math.sqrt(1 - cosTheta * cosTheta);
* double theta = Math.atan2(sinTheta, cosTheta);
*
* // The candidate intersection points are located +/- theta in the x-y
* // plane. For an intersection to be valid, we need to check that the
* // intersection point is contained in the interior of the edge AB and
* // also that it is contained within the given longitude interval "lng".
*
* // Compute the range of theta values spanned by the edge AB.
* S1Interval abTheta = S1Interval.fromPointPair(Math.atan2(
* a.dotProd(y), a.dotProd(x)), Math.atan2(b.dotProd(y), b.dotProd(x)));
*
* if (abTheta.contains(theta)) {
* // Check if the intersection point is also in the given "lng" interval.
* S2Point isect = S2Point.add(S2Point.mul(x, cosTheta), S2Point.mul(y,
* sinTheta));
* if (lng.contains(Math.atan2(isect.y, isect.x))) {
* return true;
* }
* }
* if (abTheta.contains(-theta)) {
* // Check if the intersection point is also in the given "lng" interval.
* S2Point intersection = S2Point.sub(S2Point.mul(x, cosTheta), S2Point.mul(y, sinTheta));
* if (lng.contains(Math.atan2(intersection.y, intersection.x))) {
* return true;
* }
* }
* return false;
*
* }
*/
public function __toString() {
return sprintf("[Lo=%s, Hi=%s]", $this->lo(), $this->hi());
}
}