forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExceptions.cpp
331 lines (303 loc) · 12.8 KB
/
Exceptions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/python_headers.h>
#include <array>
#include <cstdarg>
#include <exception>
#include <utility>
#include <fmt/format.h>
#include <torch/csrc/THP.h>
#include <c10/util/StringUtil.h>
PyObject *THPException_FatalError, *THPException_LinAlgError,
*THPException_OutOfMemoryError, *THPException_DistError,
*THPException_DistBackendError, *THPException_DistNetworkError,
*THPException_DistStoreError;
#define ASSERT_TRUE(cond) \
if (!(cond)) \
return false
bool THPException_init(PyObject* module) {
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_FatalError =
PyErr_NewException("torch.FatalError", nullptr, nullptr));
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
PyModule_AddObject(module, "FatalError", THPException_FatalError) == 0);
// Set the doc string here since _add_docstr throws malloc errors if tp_doc is
// modified for an error class.
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_LinAlgError = PyErr_NewExceptionWithDoc(
"torch._C._LinAlgError",
"Error raised by torch.linalg function when the cause of error is a numerical inconsistency in the data.\n \
For example, you can the torch.linalg.inv function will raise torch.linalg.LinAlgError when it finds that \
a matrix is not invertible.\n \
\n\
Example:\n \
>>> # xdoctest: +REQUIRES(env:TORCH_DOCKTEST_LAPACK)\n \
>>> matrix = torch.eye(3, 3)\n \
>>> matrix[-1, -1] = 0\n \
>>> matrix\n \
tensor([[1., 0., 0.],\n \
[0., 1., 0.],\n \
[0., 0., 0.]])\n \
>>> torch.linalg.inv(matrix)\n \
Traceback (most recent call last):\n \
File \"<stdin>\", line 1, in <module>\n \
torch._C._LinAlgError: torch.linalg.inv: The diagonal element 3 is zero, the inversion\n \
could not be completed because the input matrix is singular.",
PyExc_RuntimeError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(module, "_LinAlgError", THPException_LinAlgError) ==
0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_OutOfMemoryError = PyErr_NewExceptionWithDoc(
"torch.cuda.OutOfMemoryError",
"Exception raised when CUDA is out of memory",
PyExc_RuntimeError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_OutOfMemoryError", THPException_OutOfMemoryError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistError",
"Exception raised when an error occurs in the distributed library",
PyExc_RuntimeError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(module, "_DistError", THPException_DistError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistBackendError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistBackendError",
"Exception raised when a backend error occurs in distributed",
THPException_DistError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_DistBackendError", THPException_DistBackendError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistNetworkError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistNetworkError",
"Exception raised when a network error occurs in distributed",
THPException_DistError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_DistNetworkError", THPException_DistNetworkError) == 0);
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
ASSERT_TRUE(
THPException_DistStoreError = PyErr_NewExceptionWithDoc(
"torch.distributed.DistStoreError",
"Exception raised when an error occurs in the distributed store",
THPException_DistError,
nullptr));
ASSERT_TRUE(
PyModule_AddObject(
module, "_DistStoreError", THPException_DistStoreError) == 0);
return true;
}
namespace torch {
void processErrorMsgInplace(std::string& str) {
// Translate Aten types to their respective pytorch ones
constexpr std::array<std::pair<c10::string_view, c10::string_view>, 64>
changes{{
// TODO: remove torch.(cuda.|)sparse.*Tensor items?
{"Variable[SparseCUDAByteType]", "torch.cuda.sparse.ByteTensor"},
{"Variable[SparseCUDACharType]", "torch.cuda.sparse.CharTensor"},
{"Variable[SparseCUDADoubleType]", "torch.cuda.sparse.DoubleTensor"},
{"Variable[SparseCUDAFloatType]", "torch.cuda.sparse.FloatTensor"},
{"Variable[SparseCUDAIntType]", "torch.cuda.sparse.IntTensor"},
{"Variable[SparseCUDALongType]", "torch.cuda.sparse.LongTensor"},
{"Variable[SparseCUDAShortType]", "torch.cuda.sparse.ShortTensor"},
{"Variable[SparseCUDAHalfType]", "torch.cuda.sparse.HalfTensor"},
{"Variable[SparseCPUByteType]", "torch.sparse.ByteTensor"},
{"Variable[SparseCPUCharType]", "torch.sparse.CharTensor"},
{"Variable[SparseCPUDoubleType]", "torch.sparse.DoubleTensor"},
{"Variable[SparseCPUFloatType]", "torch.sparse.FloatTensor"},
{"Variable[SparseCPUIntType]", "torch.sparse.IntTensor"},
{"Variable[SparseCPULongType]", "torch.sparse.LongTensor"},
{"Variable[SparseCPUShortType]", "torch.sparse.ShortTensor"},
{"Variable[SparseCPUHalfType]", "torch.sparse.HalfTensor"},
{"Variable[CUDAByteType]", "torch.cuda.ByteTensor"},
{"Variable[CUDACharType]", "torch.cuda.CharTensor"},
{"Variable[CUDADoubleType]", "torch.cuda.DoubleTensor"},
{"Variable[CUDAFloatType]", "torch.cuda.FloatTensor"},
{"Variable[CUDAIntType]", "torch.cuda.IntTensor"},
{"Variable[CUDALongType]", "torch.cuda.LongTensor"},
{"Variable[CUDAShortType]", "torch.cuda.ShortTensor"},
{"Variable[CUDAHalfType]", "torch.cuda.HalfTensor"},
{"Variable[CPUByteType]", "torch.ByteTensor"},
{"Variable[CPUCharType]", "torch.CharTensor"},
{"Variable[CPUDoubleType]", "torch.DoubleTensor"},
{"Variable[CPUFloatType]", "torch.FloatTensor"},
{"Variable[CPUIntType]", "torch.IntTensor"},
{"Variable[CPULongType]", "torch.LongTensor"},
{"Variable[CPUShortType]", "torch.ShortTensor"},
{"Variable[CPUHalfType]", "torch.HalfTensor"},
{"SparseCUDAByteType", "torch.cuda.sparse.ByteTensor"},
{"SparseCUDACharType", "torch.cuda.sparse.CharTensor"},
{"SparseCUDADoubleType", "torch.cuda.sparse.DoubleTensor"},
{"SparseCUDAFloatType", "torch.cuda.sparse.FloatTensor"},
{"SparseCUDAIntType", "torch.cuda.sparse.IntTensor"},
{"SparseCUDALongType", "torch.cuda.sparse.LongTensor"},
{"SparseCUDAShortType", "torch.cuda.sparse.ShortTensor"},
{"SparseCUDAHalfType", "torch.cuda.sparse.HalfTensor"},
{"SparseCPUByteType", "torch.sparse.ByteTensor"},
{"SparseCPUCharType", "torch.sparse.CharTensor"},
{"SparseCPUDoubleType", "torch.sparse.DoubleTensor"},
{"SparseCPUFloatType", "torch.sparse.FloatTensor"},
{"SparseCPUIntType", "torch.sparse.IntTensor"},
{"SparseCPULongType", "torch.sparse.LongTensor"},
{"SparseCPUShortType", "torch.sparse.ShortTensor"},
{"SparseCPUHalfType", "torch.sparse.HalfTensor"},
{"CUDAByteType", "torch.cuda.ByteTensor"},
{"CUDACharType", "torch.cuda.CharTensor"},
{"CUDADoubleType", "torch.cuda.DoubleTensor"},
{"CUDAFloatType", "torch.cuda.FloatTensor"},
{"CUDAIntType", "torch.cuda.IntTensor"},
{"CUDALongType", "torch.cuda.LongTensor"},
{"CUDAShortType", "torch.cuda.ShortTensor"},
{"CUDAHalfType", "torch.cuda.HalfTensor"},
{"CPUByteType", "torch.ByteTensor"},
{"CPUCharType", "torch.CharTensor"},
{"CPUDoubleType", "torch.DoubleTensor"},
{"CPUFloatType", "torch.FloatTensor"},
{"CPUIntType", "torch.IntTensor"},
{"CPULongType", "torch.LongTensor"},
{"CPUShortType", "torch.ShortTensor"},
{"CPUHalfType", "torch.HalfTensor"},
}};
// Avoid doing any work if no types need translated
if (str.find("Type") == str.npos) {
return;
}
for (const auto& it : changes) {
c10::ReplaceAll(str, it.first, it.second);
}
}
std::string processErrorMsg(std::string str) {
processErrorMsgInplace(str);
return str;
}
static std::string formatMessage(const char* format, va_list fmt_args) {
static const size_t ERROR_BUF_SIZE = 1024;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
char error_buf[ERROR_BUF_SIZE];
vsnprintf(error_buf, ERROR_BUF_SIZE, format, fmt_args);
// Ensure that the string is null terminated
error_buf[sizeof(error_buf) / sizeof(*error_buf) - 1] = 0;
return std::string(error_buf);
}
void translate_exception_to_python(const std::exception_ptr& e_ptr) {
try {
TORCH_INTERNAL_ASSERT(
e_ptr,
"translate_exception_to_python "
"called with invalid exception pointer");
std::rethrow_exception(e_ptr);
}
CATCH_ALL_ERRORS(return)
}
TypeError::TypeError(const char* format, ...) {
va_list fmt_args{};
va_start(fmt_args, format);
msg = formatMessage(format, fmt_args);
va_end(fmt_args);
}
AttributeError::AttributeError(const char* format, ...) {
va_list fmt_args{};
va_start(fmt_args, format);
msg = formatMessage(format, fmt_args);
va_end(fmt_args);
}
void PyWarningHandler::InternalHandler::process(const c10::Warning& warning) {
warning_buffer_.push_back(warning);
}
PyWarningHandler::PyWarningHandler() noexcept(true)
: prev_handler_(c10::WarningUtils::get_warning_handler()),
in_exception_(false) {
c10::WarningUtils::set_warning_handler(&internal_handler_);
}
// Get the Python warning type for a warning
PyObject* map_warning_to_python_type(const c10::Warning& warning) {
struct Visitor {
PyObject* operator()(const c10::UserWarning&) const {
return PyExc_UserWarning;
}
PyObject* operator()(const c10::DeprecationWarning&) const {
return PyExc_DeprecationWarning;
}
};
return std::visit(Visitor(), warning.type());
}
/// See NOTE [ Conversion Cpp Python Warning ] for noexcept justification
/// NOLINTNEXTLINE(bugprone-exception-escape)
PyWarningHandler::~PyWarningHandler() noexcept(false) {
c10::WarningUtils::set_warning_handler(prev_handler_);
auto& warning_buffer = internal_handler_.warning_buffer_;
if (!warning_buffer.empty()) {
PyObject *type = nullptr, *value = nullptr, *traceback = nullptr;
pybind11::gil_scoped_acquire gil;
auto result = 0;
if (in_exception_) {
// This (combined with PyErr_Restore below) also works when no python
// error has been set yet
PyErr_Fetch(&type, &value, &traceback);
}
for (const auto& warning : warning_buffer) {
auto source_location = warning.source_location();
auto msg = warning.msg();
processErrorMsgInplace(msg);
if (source_location.file == nullptr) {
result =
PyErr_WarnEx(map_warning_to_python_type(warning), msg.c_str(), 1);
} else if (warning.verbatim()) {
// Sets the source location from the warning
// Note: PyErr_WarnExplicit will disregard Python's warning filter
// and always appear. This is in contrast to PyErr_WarnEx,
// which respects the warning filter.
result = PyErr_WarnExplicit(
/*category=*/map_warning_to_python_type(warning),
/*message=*/msg.c_str(),
/*filename=*/source_location.file,
/*lineno=*/static_cast<int>(source_location.line),
/*module=*/nullptr,
/*registry=*/nullptr);
} else {
// Lets Python set the source location and puts the C++ warning
// location into the message.
auto buf = fmt::format(
"{} (Triggered internally at {}:{}.)",
msg,
source_location.file,
source_location.line);
result =
PyErr_WarnEx(map_warning_to_python_type(warning), buf.c_str(), 1);
}
if (result < 0) {
if (in_exception_) {
// PyErr_Print prints the traceback to sys.stderr and
// clears the error indicator
PyErr_Print();
} else {
break;
}
}
}
warning_buffer.clear();
if ((result < 0) && (!in_exception_)) {
/// A warning raised an error, we need to force the parent
/// function to return an error code.
throw python_error();
}
if (in_exception_) {
PyErr_Restore(type, value, traceback);
}
}
}
} // namespace torch