forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
131 lines (103 loc) · 4.62 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# The vLLM Dockerfile is used to construct vLLM image that can be directly used
# to run the OpenAI compatible server.
#################### BASE BUILD IMAGE ####################
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.1/compat/
WORKDIR /workspace
# install build and runtime dependencies
COPY requirements.txt requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
# install development dependencies
COPY requirements-dev.txt requirements-dev.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-dev.txt
#################### BASE BUILD IMAGE ####################
#################### EXTENSION BUILD IMAGE ####################
FROM dev AS build
# install build dependencies
COPY requirements-build.txt requirements-build.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements-build.txt
# copy input files
COPY csrc csrc
COPY setup.py setup.py
COPY cmake cmake
COPY CMakeLists.txt CMakeLists.txt
COPY requirements.txt requirements.txt
COPY pyproject.toml pyproject.toml
COPY vllm/__init__.py vllm/__init__.py
# cuda arch list used by torch
ARG torch_cuda_arch_list='7.0 7.5 8.0 8.6 8.9 9.0+PTX'
ENV TORCH_CUDA_ARCH_LIST=${torch_cuda_arch_list}
# max jobs used by Ninja to build extensions
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# number of threads used by nvcc
ARG nvcc_threads=8
ENV NVCC_THREADS=$nvcc_threads
# make sure punica kernels are built (for LoRA)
ENV VLLM_INSTALL_PUNICA_KERNELS=1
RUN python3 setup.py build_ext --inplace
#################### EXTENSION Build IMAGE ####################
#################### FLASH_ATTENTION Build IMAGE ####################
FROM dev as flash-attn-builder
# max jobs used for build
ARG max_jobs=2
ENV MAX_JOBS=${max_jobs}
# flash attention version
ARG flash_attn_version=v2.5.6
ENV FLASH_ATTN_VERSION=${flash_attn_version}
WORKDIR /usr/src/flash-attention-v2
# Download the wheel or build it if a pre-compiled release doesn't exist
RUN pip --verbose wheel flash-attn==${FLASH_ATTN_VERSION} \
--no-build-isolation --no-deps --no-cache-dir
#################### FLASH_ATTENTION Build IMAGE ####################
#################### TEST IMAGE ####################
# image to run unit testing suite
FROM dev AS test
# copy pytorch extensions separately to avoid having to rebuild
# when python code changes
WORKDIR /vllm-workspace
# ADD is used to preserve directory structure
ADD . /vllm-workspace/
COPY --from=build /workspace/vllm/*.so /vllm-workspace/vllm/
# Install flash attention (from pre-built wheel)
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
# ignore build dependencies installation because we are using pre-complied extensions
RUN rm pyproject.toml
RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip install . --verbose
#################### TEST IMAGE ####################
#################### RUNTIME BASE IMAGE ####################
# We used base cuda image because pytorch installs its own cuda libraries.
# However cupy depends on cuda libraries so we had to switch to the runtime image
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
# libnccl required for ray
RUN apt-get update -y \
&& apt-get install -y python3-pip
WORKDIR /workspace
COPY requirements.txt requirements.txt
RUN --mount=type=cache,target=/root/.cache/pip \
pip install -r requirements.txt
# Install flash attention (from pre-built wheel)
RUN --mount=type=bind,from=flash-attn-builder,src=/usr/src/flash-attention-v2,target=/usr/src/flash-attention-v2 \
pip install /usr/src/flash-attention-v2/*.whl --no-cache-dir
#################### RUNTIME BASE IMAGE ####################
#################### OPENAI API SERVER ####################
# openai api server alternative
FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer modelscope
COPY --from=build /workspace/vllm/*.so /workspace/vllm/
COPY vllm vllm
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
#################### OPENAI API SERVER ####################