forked from mceq-project/crflux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMascarettiBlasiEvoli.py
248 lines (205 loc) · 9.28 KB
/
MascarettiBlasiEvoli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from CRFluxModels import *
class MascarettiBlasiEvoli(PrimaryFlux):
"""
Model of the primary cosmic ray spectrum based on a paper preprint from C. Mascaretti, P. Blasi and C. Evoli.
Two models, exponential-square cutoff and spectral break were fitted to data from ARGO and KASCADE.
Each model features 3 componments: protons, Helium and a light extragalactic (carbon) component.
# p/H - 14
# He - 402
# light, extragalactic component (proton only) - 14
Args:
model (str): on of ["cutoff_ARGO", "break_ARGO", "cutoff_KASCADE", "break_KASCADE"]
"""
def __init__(self, model="cutoff_ARGO"):
self.name = "MascarettiBlasiEvoli"
self.model, self.fit = model.split("_")
self.params = {}
# check for model and fit string to be valid
if self.model not in ["cutoff", "break"] or self.fit not in ["ARGO", "KASCADE"]:
raise Exception(
'MascarettiBlasiEvoli(): Unknown model/fit version requested: '+'{}+{}'.format(self.model, self.fit)
+'Allowed: model = [\'cutoff\', \'break\'] and fit = [\'ARGO\', \'KASCADE\']')
# set params
# params[corsika_id] = (normalization @ 10 TeV, slope)
# p and He always the same
self.params[14] = (1.50, 2.71) # p
self.params[402] = (1.50, 2.63) # He original was (1.50, 2.64)
self.nucleus_ids = self.params.keys()
# rigiditys different
self.rigidity = {"cutoff" : {"ARGO" : 1.30e15,
"KASCADE" : 15.1e15},
"break" : {"ARGO" : 640e12,
"KASCADE" : 5.8e15}}
self.delta = 1.0/3.0
self.calculate_params()
# calculate b_i, E_lim and set it (params = (a, \gamma) b, E_lim))
def calculate_params(self):
for corsika_id in self.nucleus_ids:
# get Z, A
Z, A = self.Z_A(corsika_id)
E_lim = Z * self.rigidity[self.model][self.fit] / 1e9
# b = (E/10TeV)**(2 - delta)
b = self.params[corsika_id][0] * (E_lim/10e3)**(2.0 - self.delta)
# set it
self.params[corsika_id] = self.params[corsika_id][:2] + (b, E_lim)
# exponential-square cutoff
def cutoff(self, corsika_id, E):
# get Z, A
Z, A = self.Z_A(corsika_id)
# a * (E/10TeV)**-gamma * exp(-(E/ZR)**2) * 10**-7
flux = self.params[corsika_id][0] * (E/10e3)**(-self.params[corsika_id][1]) * np.exp(-1.0*(E/(Z*self.rigidity[self.model][self.fit]/1e9))**2) * 1e-7
return flux
# change of slope
def slope_break(self, corsika_id, E):
# check for case
if np.isscalar(E):
if E <= self.params[corsika_id][3]:
# a * (E/10TeV)**(-gamma + delta -2) * 20**-7
flux = self.params[corsika_id][0] * (E/10e3)**(-self.params[corsika_id][1]) * 1e-7
else:
# b * (E/10TeV)**(-gamma + delta -2) * 20**-7
flux = self.params[corsika_id][2] * (E/10e3)**(-self.params[corsika_id][1] + 1.0/3.0 - 2.0) * 1e-7
else:
flux = np.where(E <= self.params[corsika_id][3], self.params[corsika_id][0] * (E/10e3)**(-self.params[corsika_id][1]) * 1e-7,
self.params[corsika_id][2] * (E/10e3)**(-self.params[corsika_id][1] + self.delta - 2.0) * 1e-7)
return flux
# calculate nucleus flux
def nucleus_flux(self, corsika_id, E):
# get nearest corsika_id
corsika_id = self._find_nearby_id(corsika_id)
# check for cutoff model
if self.model == "cutoff":
flux = self.cutoff(corsika_id, E)
if corsika_id == 14:
flux += 6.00 * (E/100e6)**(-2.70) * 1e-19
# check for break model
elif self.model == "break":
flux = self.slope_break(corsika_id, E)
if corsika_id == 14:
flux += 5.00 * (E/100e6)**(-2.70) * 1e-19
return flux
# knee as exponential exp(-(E/ZR)^2) from ARGO
class exp2_argo(PrimaryFlux):
"""data taken from from https://lpsc.in2p3.fr/cosmic-rays-db/#
"""
def __init__(self, model=None):
self.name = 'exp2_argo'
self.sname = 'e2ar'
self.params = {}
# dictionary[corsika_id] = (normalization @ 10 TeV, slope, charge)
#self.params[14] = (1.5e-7+0.2e-7,-2.71+0.04,1) # H
#self.params[402] = (1.5e-7+0.01e-7,-2.63+0.03,2) # He
self.params[14] = (1.5e-7,-2.71,1) # H
self.params[402] = (1.5e-7,-2.63,2) # He
self.nucleus_ids = self.params.keys()
def nucleus_flux(self, corsika_id, E):
corsika_id = self._find_nearby_id(corsika_id)
return self.exp2_ar(corsika_id, E)
def exp2_ar(self, corsika_id, E):
rigidity = 1.3e06
param = self.params[corsika_id]
add = 0
if (corsika_id==14):
#add = (6.0e-19+0.2e-19)*((E/1e8)**(-2.7))
add = (6.0e-19)*((E/1e8)**(-2.7))
Z = param[2]
return param[0]*((E/1e4)**param[1])*np.exp(-pow(E/(Z*rigidity),2))+add
# knee as exponential exp(-(E/ZR)^2) from KASCADE-Grande
class exp2_kg(PrimaryFlux):
"""data taken from from https://lpsc.in2p3.fr/cosmic-rays-db/#
"""
def __init__(self, model=None):
self.name = 'exp2_kg'
self.sname = 'e2kg'
self.params = {}
# dictionary[corsika_id] = (normalization @ 10 TeV, slope, charge)
#self.params[14] = (1.5e-7+0.2e-7,-2.71+0.04,1) # H
#self.params[402] = (1.5e-7+0.01e-7,-2.63+0.03,2) # He
self.params[14] = (1.5e-7,-2.71,1) # H
self.params[402] = (1.5e-7,-2.63,2) # He
self.nucleus_ids = self.params.keys()
def nucleus_flux(self, corsika_id, E):
corsika_id = self._find_nearby_id(corsika_id)
return self.exp2_kagr(corsika_id, E)
def exp2_kagr(self, corsika_id, E):
rigidity = 15.1e06
param = self.params[corsika_id]
Z = param[2]
add = 0
if (corsika_id==14):
#add = (6.0e-19-0.2e-19)*((E/1e8)**(-2.7))
add = (6.0e-19)*((E/1e8)**(-2.7))
Z = param[2]
return param[0]*((E/1e4)**param[1])*np.exp(-pow(E/(Z*rigidity),2))+add
#change slope at rigidity from fit to ARGO data
class dslope_argo(PrimaryFlux):
"""data taken from from https://lpsc.in2p3.fr/cosmic-rays-db/#
"""
def __init__(self, model=None):
self.name = 'dslope_argo'
self.sname = 'DS_ARGO'
self.params = {}
# dictionary[corsika_id] = (normalization @ 10 TeV, slope, charge)
#self.params[14] = (1.5e-7-0.2e-7,-2.71-0.04,1) # H
#self.params[402] = (1.5e-7-0.01e-7,-2.63-0.03,2) # He
self.params[14] = (1.5e-7,-2.71,1) # H
self.params[402] = (1.5e-7,-2.63,2) # He
self.nucleus_ids = self.params.keys()
def nucleus_flux(self, corsika_id, E):
corsika_id = self._find_nearby_id(corsika_id)
return self.ds_ar(corsika_id, E)
def ds_ar(self, corsika_id, E):
param = self.params[corsika_id]
# rigidity of the knee
r_knee = 640e3
# knee in energy
E0 = param[2]*r_knee
# add extragalactic light (proton only) component
add = 0
ddelta = 1./3
if (corsika_id==14):
#add = (6.0e-19+0.2e-19)*((E/1e8)**(-2.7))
add = 5.0e-19*((E/1e8)**(-2.7))
if E < E0:
return param[0]*((E/1e4)**param[1])+add
else:
# the normalization has to be changed to grant continuity of the spectrum
norm = param[0]*((E0/1e4)**(2-ddelta))
gamm = param[1]+ddelta-2
return norm*((E/1e4)**gamm)+add
#change slope at rigidity from fit to KASCADE-Grande data
class dslope_kg(PrimaryFlux):
"""data taken from from https://lpsc.in2p3.fr/cosmic-rays-db/#
"""
def __init__(self, model=None):
self.name = 'dslope_kg'
self.sname = 'DS_KG'
self.params = {}
# dictionary[corsika_id] = (normalization @ 10 TeV, slope, charge)
#self.params[14] = (1.5e-7-0.2e-7,-2.71-0.04,1) # H
#self.params[402] = (1.5e-7-0.01e-7,-2.63-0.03,2) # He
self.params[14] = (1.5e-7,-2.71,1) # H
self.params[402] = (1.5e-7,-2.63,2) # He
self.nucleus_ids = self.params.keys()
def nucleus_flux(self, corsika_id, E):
corsika_id = self._find_nearby_id(corsika_id)
return self.ds_kg(corsika_id, E)
def ds_kg(self, corsika_id, E):
param = self.params[corsika_id]
# rigidity of the knee
r_knee = 5.8e6
# knee in energy
E0 = param[2]*r_knee
# add extragalactic light (proton only) component
add = 0
ddelta = 1./3
if (corsika_id==14):
#add = (5.0e-19-0.5e-19)*((E/1e8)**(-2.7))
add = (5.0e-19)*((E/1e8)**(-2.7))
if E < E0:
return param[0]*((E/1e4)**param[1])+add
else:
# the normalization has to be changed to grant continuity of the spectrum
norm = param[0]*((E0/1e4)**(2-ddelta))
gamm = param[1]+ddelta-2
return norm*((E/1e4)**gamm)+add