-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
123 lines (100 loc) · 4.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import warnings
import torchaudio
from typing import List
from itertools import groupby
torchaudio.set_audio_backend("soundfile") # switch backend
def read_batch(audio_paths: List[str]):
return [read_audio(audio_path)
for audio_path
in audio_paths]
def split_into_batches(lst: List[str],
batch_size: int = 10):
return [lst[i:i + batch_size]
for i in
range(0, len(lst), batch_size)]
def read_audio(path: str,
target_sr: int = 16000):
assert torchaudio.get_audio_backend() == 'soundfile'
wav, sr = torchaudio.load(path)
if wav.size(0) > 1:
wav = wav.mean(dim=0, keepdim=True)
if sr != target_sr:
transform = torchaudio.transforms.Resample(orig_freq=sr,
new_freq=target_sr)
wav = transform(wav)
sr = target_sr
assert sr == target_sr
return wav.squeeze(0)
def prepare_model_input(batch: List[torch.Tensor],
device=torch.device('cpu')):
max_seqlength = max(max([len(_) for _ in batch]), 12800)
inputs = torch.zeros(len(batch), max_seqlength)
for i, wav in enumerate(batch):
inputs[i, :len(wav)].copy_(wav)
inputs = inputs.to(device)
return inputs
class Decoder():
def __init__(self,
labels: List[str]):
self.labels = labels
self.blank_idx = self.labels.index('_')
self.space_idx = self.labels.index(' ')
def process(self,
probs, wav_len, word_align):
assert len(self.labels) == probs.shape[1]
for_string = []
argm = torch.argmax(probs, axis=1)
align_list = [[]]
for j, i in enumerate(argm):
if i == self.labels.index('2'):
try:
prev = for_string[-1]
for_string.append('$')
for_string.append(prev)
align_list[-1].append(j)
continue
except:
for_string.append(' ')
warnings.warn('Token "2" detected a the beginning of sentence, omitting')
align_list.append([])
continue
if i != self.blank_idx:
for_string.append(self.labels[i])
if i == self.space_idx:
align_list.append([])
else:
align_list[-1].append(j)
string = ''.join([x[0] for x in groupby(for_string)]).replace('$', '').strip()
align_list = list(filter(lambda x: x, align_list))
if align_list and wav_len and word_align:
align_dicts = []
linear_align_coeff = wav_len / len(argm)
to_move = min(align_list[0][0], 1.5)
for i, align_word in enumerate(align_list):
if len(align_word) == 1:
align_word.append(align_word[0])
align_word[0] = align_word[0] - to_move
if i == (len(align_list) - 1):
to_move = min(1.5, len(argm) - i)
align_word[-1] = align_word[-1] + to_move
else:
to_move = min(1.5, (align_list[i + 1][0] - align_word[-1]) / 2)
align_word[-1] = align_word[-1] + to_move
for word, timing in zip(string.split(), align_list):
align_dicts.append({'word': word,
'start_ts': round(timing[0] * linear_align_coeff, 2),
'end_ts': round(timing[-1] * linear_align_coeff, 2)})
return string, align_dicts
return string
def __call__(self,
probs: torch.Tensor,
wav_len: float = 0,
word_align: bool = False):
return self.process(probs, wav_len, word_align)
def init_jit_model(model_path: str,
device: torch.device = torch.device('cpu')):
torch.set_grad_enabled(False)
model = torch.jit.load(model_path, map_location=device)
model.eval()
return model, Decoder(model.labels)