-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathSettingsParser.lua
400 lines (342 loc) · 12.8 KB
/
SettingsParser.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
-- Settings and command line parser
local weight_loss_delta = {1, 5, 3}
cmd = torch.CmdLine()
cmd:option('-delta1', weight_loss_delta[1], 'lambda_SI')
cmd:option('-delta2', weight_loss_delta[2], 'lambda_SV')
cmd:option('-delta3', weight_loss_delta[3], 'lambda_SF')
cmd:option('-exprate', 0.2, 'expand ratio for the bounding box for SV')
cmd:option('-istrain', 'train', 'train or test or val')
cmd:option('-postfix', '', 'postfix for saving models and logs')
cmd:option('-category', '', 'if you wanna train for specific categories')
cmd:option('-weights_segmentation', '', 'address of weights for segmentation network')
cmd:option('-weights_texture', '', 'address of weights for texture network')
cmd:option('-predictedSV', false, 'predicted masks from multipath or ground truth SV')
cmd:option('-output_nc', 3, 'Number of channels of the output')
cmd:option('-amodal_not_given', true, 'set this if you want to use ground truth amodal for texture generation')
cmd:option('-onebatch', false, 'one batch training for sanity check')
cmd:option('-batchSize', 1, 'batchSize')
cmd:option('-lambda', 100, 'L1 weight')
cmd:option('-lambda2', 1, 'texture weight')
cmd:option('-lambdac', .1, 'CVPR weight')
cmd:option('-both_masks', false, 'give SV and SF as input to texture network')
cmd:option('-no_masks', false, 'give no mask as input to texture network')
cmd:option('-old_no_masks', false, 'give no mask as input to texture network but no change in other parts of the network')
cmd:option('-half_both_masks', false, 'give SV and SI as input to texture network')
cmd:option('-vis_prob',0, 'if you want to randomly visualize set to the ratio you wish to save visualization for')
cmd:option('-netG', 'unet', 'unet or encoder_decoder')
cmd:option('-lr', 0.0002, 'learning rate')
cmd:option('-condition_GAN', 1, 'do you want conditional GAN or not')
cmd:option('-nobg', false, 'no background')
cmd:option('-end2end', false, 'train end to end, if not train each part individually')
cmd:option('-output_segm_dim', 58, 'size of final segmentation before upsampling')
cmd:option('-baseLR', 1e-3, 'starting learning rate for cvpr model')
cmd:option('-realdata', false, 'natural images dataset (A subset of Pascal)')
cmd:option('-save_output', '', 'where to save output in case of visualization')
cmd:option('-NN', false, 'nearest neighbor model')
cmd:option('-occl_thr_vis', 1, 'occlusion rate threshold for visualization')
cmd:option('-l1_thr', 100, 'l1 loss threshold for visualization')
cmd:option('-here', false, 'read from current directory instead of dataset')
cmd = cmd:parse(arg)
cmd.loadSize = 256
cmd.fineSize = 256
cmd.loadSize_cvpr = 256
cmd.fineSize_cvpr = 256
cmd.multipath = cmd.predictedSV
cmd.continue_texture = cmd.weights_texture
cmd.reload = cmd.weights_segmentation
cmd.maxVis = 100
cmd.cvpr = true
if cmd.end2end then
cmd.nobg = true
end
if cmd.cvpr then
cmd.output_nc = 1
cmd.amodal_not_given = true
cmd.exprate = cmd.exprate
cmd.loadSize_cvpr = cmd.output_segm_dim
cmd.fineSize_cvpr = cmd.output_segm_dim
cmd.postfix = '_cvpr' .. cmd.postfix
cmd.postfix = '_baseLRcvpr' .. cmd.baseLR .. cmd.postfix
end
if cmd.end2end then
cmd.postfix = '_end2end' .. cmd.postfix
end
if cmd.multipath then
cmd.postfix = '_multipath' .. cmd.postfix
end
if cmd.old_no_masks then
if not cmd.cvpr then
cmd.no_masks = true
else
cmd.no_masks = false
end
cmd.postfix = '_old_nomask' .. cmd.postfix
end
cmd.random_jitter = true
if cmd.onebatch or cmd.istrain ~= 'train' then
cmd.random_jitter = false
end
if cmd.istrain ~= 'train' then
cmd.batchSize = 1
cmd.continue_train = 1
end
if cmd.continue_texture ~= '' then
cmd.continue_train = 1
end
if cmd.lr ~= 0.0002 then
cmd.postfix = '_lr' .. cmd.lr .. cmd.postfix
end
if cmd.condition_GAN ~= 1 then
cmd.postfix = '_no_cond_GAN' .. cmd.postfix
end
if cmd.realdata then
cmd.postfix = '_realdata' .. cmd.postfix
end
cmd.input_nc = 4
if cmd.half_both_masks then
cmd.both_masks = true
end
if cmd.no_masks then
cmd.input_nc = 3
cmd.amodal_not_given = true
cmd.postfix = '_nomask' .. cmd.postfix
end
if cmd.both_masks then
cmd.input_nc = 5
cmd.amodal_not_given = true
cmd.postfix = '_bothmasks' .. cmd.postfix
end
if cmd.netG == 'encoder_decoder' then
cmd.postfix = '_encdec' .. cmd.postfix
end
if cmd.lambda ~= 100 then
cmd.postfix = '_lambda' .. cmd.lambda .. cmd.postfix
end
cmd.postfix = '_lambdatwo' .. cmd.lambda2 .. cmd.postfix
cmd.postfix = '_lambdac' .. cmd.lambdac .. cmd.postfix
exprate = cmd.exprate
weight_loss_delta = {cmd.delta1, cmd.delta2, cmd.delta3}
if cmd.amodal_not_given then
cmd.amodal_given = false
else
cmd.amodal_given = true
end
if cmd.category ~= '' then
cmd.postfix = '_' .. cmd.category .. cmd.postfix
end
SERVER = cmd.server
opt = {
norm2D_cvpr = {37000,27000,12000},
nobg = cmd.nobg,
random_jitter = cmd.random_jitter,
expand_jitter_ratio = 0.1,
clean = true,
category = cmd.category,
myloss = cmd.myloss,
weights_loss = weight_loss_delta,
istrain = cmd.istrain,
postfix = cmd.postfix,
amodal_given = cmd.amodal_given,
wtl2 = 0.999, -- 0 means don't use else use with this weight
onebatch = cmd.onebatch,
expand_ratio = exprate,
crop_ratio = exprate,
vis_prob = cmd.vis_prob,
output_nc = cmd.output_nc,
batchSize = cmd.batchSize, -- # images in batch
loadSize = cmd.loadSize, -- scale images to this size for texture generation network
fineSize = cmd.fineSize, -- then crop to this size for texture generation network
loadSize_cvpr = cmd.loadSize_cvpr, -- scale images to this size for segmentation network
fineSize_cvpr = cmd.fineSize_cvpr, -- then crop to this size for segmentation network
ngf = 64, -- # of gen filters in first conv layer
ndf = 64, -- # of discrim filters in first conv layer
input_nc = cmd.input_nc, -- # of input image channels
newCache = 'newdata_read500_fullmeansub_recover', -- address of where to save the input images cache to speed up the data loading process
niter = 200, -- # of iter at starting learning rate
lr = cmd.lr, -- initial learning rate for adam
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
flip = 1, -- if flip the images for data argumentation
gpu = 1, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = 'SeGAN', -- name of the experiment, should generally be passed on the command line
nThreads = 1, -- # threads for loading data
save_epoch_freq = 1, -- save a model every save_epoch_freq epochs (does not overwrite previously saved models)
save_latest_freq = 1000000000, -- save the latest model every latest_freq sgd iterations (overwrites the previous latest model)
print_freq = 1, -- print the debug information every print_freq iterations
display_freq = 100, -- display the current results every display_freq iterations
save_display_freq = 5000, -- save the current display of results every save_display_freq_iterations
continue_train=0, -- if continue training, load the latest model: 1: true, 0: false
serial_batches = 0, -- if 1, takes images in order to make batches, otherwise takes them randomly
serial_batch_iter = 1, -- iter into serial image list
checkpoints_dir = './checkpoints', -- models are saved here
cudnn = 1, -- set to 0 to not use cudnn
condition_GAN = cmd.condition_GAN, -- set to 0 to use unconditional discriminator
use_GAN = 1, -- set to 0 to turn off GAN term
use_L1 = 1, -- set to 0 to turn off L1 term
which_model_netD = 'basic', -- selects model to use for netD
which_model_netG = cmd.netG, -- selects model to use for netG encoder_decoder
n_layers_D = 0, -- only used if which_model_netD=='n_layers'
lambda = cmd.lambda, -- weight on L1 term in objective
lambda2= cmd.lambda2, -- weight on texture adversarial loss
lambdac= cmd.lambdac, -- weight on total texture loss for backpropagating into segmentation network
open_size = 500,
norm1C = {0.025, 0.01, 0.03},
norm3C = {1,1,1},
sum = {0,0,0},
counter = 0,
data = 'dataset/train',
}
if cmd.continue_train then
opt.continue_train = 1
end
opt.weights_loss2D = opt.weights_loss
if cmd.lambda == -1 then
opt.lambda = 100
opt.use_GAN = 0
end
opt.DataRootPath = 'dyce_data'
opt.datasetfile = opt.DataRootPath .. '/annotations/'
opt.saveadr = 'cache/'.. opt.name ..'/checkpoints/'
opt.nc_output = opt.output_nc
opt.nc_input = opt.input_nc
if opt.istrain ~= 'train' then
opt.batchSize = 1
end
if opt.istrain == 'train' or opt.onebatch then
opt.datasetfile = opt.datasetfile .. 'train'
elseif opt.istrain == 'val' then
opt.datasetfile = opt.datasetfile .. 'val'
elseif opt.istrain == 'trainvis' then
opt.datasetfile = opt.datasetfile .. 'full'
elseif opt.istrain == 'testval' then
opt.datasetfile = opt.datasetfile .. 'testval'
else
opt.datasetfile = opt.datasetfile .. 'test'
end
if cmd.multipath then
opt.datasetfile = opt.datasetfile .. '_multipath'
end
if cmd.realdata then
opt.datasetfile = opt.datasetfile .. '_real'
end
opt.datasetfile = opt.datasetfile .. '.txt'
opt.isBig = ''
if opt.nc_output == 3 then
opt.isBig = opt.isBig .. '_newtask'
else
opt.isBig = opt.isBig .. '_prevtask'
end
opt.isBig = opt.isBig .. '_expand_' .. opt.expand_ratio ..'_crop_' .. opt.crop_ratio .. '_newloss_' .. opt.weights_loss[1] .. '_' .. opt.weights_loss[2] .. '_' .. opt.weights_loss[3]
if opt.amodal_given then
opt.isBig = opt.isBig .. '_amodalgiven'
end
opt.isBig = opt.isBig .. '_wtl2_' .. opt.wtl2
opt.isBig = opt.isBig .. opt.postfix
if opt.myloss then
opt.isBig = opt.isBig .. '_myloss'
end
opt.name = opt.name .. opt.isBig
opt.name_texture = opt.name .. "_texture"
opt.clean_mask_thr = cmd.loadSize_cvpr * cmd.loadSize_cvpr / (1000 * 1000),
paths.mkdir(opt.saveadr )
---- options
config={};
amodal_path = 'amodal'
images_path = "Images"
modal_path = 'modal'
if cmd.multipath then
modal_path = 'multipath_masks'
end
if cmd.realdata then
modal_path = 'realimage_modal'
amodal_path = 'gt_amodal_real'
images_path = 'realImage'
end
config.baseLR = cmd.baseLR
config.stepLR = 20000
-- Learning rate decay rules
config.regimes = {
-- start, end, LR,
{ 1, config.stepLR, config.baseLR, },
{ config.stepLR + 1, config.stepLR * 2, config.baseLR * 0.1, },
{ config.stepLR * 2 + 1, config.stepLR * 3, config.baseLR * 0.001, },
{config.stepLR * 3 + 1, config.stepLR * 4, config.baseLR * 0.0001,},
};
config.batchSize = opt.batchSize
config.expandratio = cmd.exprate
config.output_segm_dim = cmd.output_segm_dim
config.DataRootPath = opt.DataRootPath
config.imagemeanK = {0.378279580698929, 0.3383278679013845, 0.2969336519420535}
config.red = {1,0,0}
config.blue = {0,0,1}
for i = 1,3 do
config.red[i] = config.red[i] - config.imagemeanK[i]
config.blue[i] = config.blue[i] - config.imagemeanK[i]
end
config.input_data = {
a_image = {
dir = config.DataRootPath .. '/' .. images_path,--
nChannels = 3,
type = "png",
suffix = "",
mean = {},
std = {},
enable = true,
croppable = true,
},
modal_mask = {
dir = config.DataRootPath ..'/' .. modal_path,
nChannels = 1,
type = "png",
suffix = "",
mean = {},
std = {},
enable = true,
},
amodal_mask = {
dir = config.DataRootPath .. '/' .. amodal_path,
nChannels = 1,
type = "png",
suffix = "",
mean = {},
std = {},
enable = false,
},
fullobject = {
dir = config.DataRootPath .. "/FullObj",
nChannels = 3,
type = "png",
suffix = "",
mean = {},
std = {},
enable = false,
},
}
if cmd.here then
config.input_data.a_image.dir = './'
config.input_data.modal_mask.dir = './'
config.input_data.amodal_mask.dir = './'
config.input_data.fullobject.dir = './'
end
config.SaveRootPath = config.DataRootPath .. "/logs"
config.CacheRootPath = config.DataRootPath
config.dataset_has_bbx = true
config.nCategories = 39
trainmeta = {
save_dir = config.CacheRootPath .. "/resnet_train_savedir".. opt.newCache,
}
paths.mkdir(trainmeta.save_dir)
testmeta = {
save_dir = config.CacheRootPath .. "/resnet_test_savedir".. opt.newCache,
}
paths.mkdir(testmeta.save_dir)
config.train = trainmeta
config.resnet_path = "resnet-18.t7"
require('models.ROISeGAN')
config.nResetLR = 5000000;
-- save opt
paths.mkdir(opt.checkpoints_dir)
paths.mkdir(opt.checkpoints_dir .. '/' .. opt.name)
file = torch.DiskFile(paths.concat(opt.checkpoints_dir, opt.name, 'opt.txt'), 'w')
file:writeObject(opt)
opt.logfile = file