-
Notifications
You must be signed in to change notification settings - Fork 570
/
predict.py
187 lines (167 loc) · 6.46 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import tempfile
from cog import BasePredictor, Input, Path
import shutil
from argparse import Namespace
import time
import sys
import pprint
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import dlib
sys.path.append(".")
sys.path.append("..")
from datasets import augmentations
from utils.common import tensor2im, log_input_image
from models.psp import pSp
from scripts.align_all_parallel import align_face
class Predictor(BasePredictor):
def setup(self):
self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
model_paths = {
"ffhq_frontalize": "pretrained_models/psp_ffhq_frontalization.pt",
"celebs_sketch_to_face": "pretrained_models/psp_celebs_sketch_to_face.pt",
"celebs_super_resolution": "pretrained_models/psp_celebs_super_resolution.pt",
"toonify": "pretrained_models/psp_ffhq_toonify.pt",
}
loaded_models = {}
for key, value in model_paths.items():
loaded_models[key] = torch.load(value, map_location="cpu")
self.opts = {}
for key, value in loaded_models.items():
self.opts[key] = value["opts"]
for key in self.opts.keys():
self.opts[key]["checkpoint_path"] = model_paths[key]
if "learn_in_w" not in self.opts[key]:
self.opts[key]["learn_in_w"] = False
if "output_size" not in self.opts[key]:
self.opts[key]["output_size"] = 1024
self.transforms = {}
for key in model_paths.keys():
if key in ["ffhq_frontalize", "toonify"]:
self.transforms[key] = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
elif key == "celebs_sketch_to_face":
self.transforms[key] = transforms.Compose(
[transforms.Resize((256, 256)), transforms.ToTensor()]
)
elif key == "celebs_super_resolution":
self.transforms[key] = transforms.Compose(
[
transforms.Resize((256, 256)),
augmentations.BilinearResize(factors=[16]),
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
def predict(
self,
image: Path = Input(description="input image"),
model: str = Input(
choices=[
"celebs_sketch_to_face",
"ffhq_frontalize",
"celebs_super_resolution",
"toonify",
],
description="choose model type",
),
) -> Path:
opts = self.opts[model]
opts = Namespace(**opts)
pprint.pprint(opts)
net = pSp(opts)
net.eval()
net.cuda()
print("Model successfully loaded!")
original_image = Image.open(str(image))
if opts.label_nc == 0:
original_image = original_image.convert("RGB")
else:
original_image = original_image.convert("L")
original_image.resize(
(self.opts[model]["output_size"], self.opts[model]["output_size"])
)
# Align Image
if model not in ["celebs_sketch_to_face", "celebs_seg_to_face"]:
input_image = self.run_alignment(str(image))
else:
input_image = original_image
img_transforms = self.transforms[model]
transformed_image = img_transforms(input_image)
if model in ["celebs_sketch_to_face", "celebs_seg_to_face"]:
latent_mask = [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
else:
latent_mask = None
with torch.no_grad():
result_image = run_on_batch(
transformed_image.unsqueeze(0), net, latent_mask
)[0]
input_vis_image = log_input_image(transformed_image, opts)
output_image = tensor2im(result_image)
if model == "celebs_super_resolution":
res = np.concatenate(
[
np.array(
input_vis_image.resize(
(
self.opts[model]["output_size"],
self.opts[model]["output_size"],
)
)
),
np.array(
output_image.resize(
(
self.opts[model]["output_size"],
self.opts[model]["output_size"],
)
)
),
],
axis=1,
)
else:
res = np.array(
output_image.resize(
(self.opts[model]["output_size"], self.opts[model]["output_size"])
)
)
out_path = Path(tempfile.mkdtemp()) / "out.png"
Image.fromarray(np.array(res)).save(str(out_path))
return out_path
def run_alignment(self, image_path):
aligned_image = align_face(filepath=image_path, predictor=self.predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def run_on_batch(inputs, net, latent_mask=None):
if latent_mask is None:
result_batch = net(inputs.to("cuda").float(), randomize_noise=False)
else:
result_batch = []
for image_idx, input_image in enumerate(inputs):
# get latent vector to inject into our input image
vec_to_inject = np.random.randn(1, 512).astype("float32")
_, latent_to_inject = net(
torch.from_numpy(vec_to_inject).to("cuda"),
input_code=True,
return_latents=True,
)
# get output image with injected style vector
res = net(
input_image.unsqueeze(0).to("cuda").float(),
latent_mask=latent_mask,
inject_latent=latent_to_inject,
resize=False,
)
result_batch.append(res)
result_batch = torch.cat(result_batch, dim=0)
return result_batch