-
Notifications
You must be signed in to change notification settings - Fork 1
/
Confocal_40x_ROIs_Pdgfrb_Morpho_Analysis.qmd
636 lines (478 loc) · 21.3 KB
/
Confocal_40x_ROIs_Pdgfrb_Morpho_Analysis.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
---
title-block-banner: true
title: "Analysis of PDGFR-β morphology in defined ROIs"
subtitle: "Data analysis notebook"
date: today
date-format: full
author:
- name: "Daniel Manrique-Castano"
orcid: 0000-0002-1912-1764
degrees:
- PhD
affiliation:
- name: Univerisity Laval
department: Psychiatry and Neuroscience
group: Laboratory of neurovascular interactions
note: "GitHub: https://daniel-manrique.github.io/"
keywords:
- PDGFR-β
- PCA
- Morphological analysis
- Brain injury
- Bayesian modeling
license: "CC BY"
format:
pdf:
toc: true
number-sections: true
colorlinks: true
html:
code-fold: true
embed-resources: true
toc: true
toc-depth: 2
toc-location: left
number-sections: true
theme: spacelab
knitr:
opts_chunk:
warning: false
message: false
csl: science.csl
bibliography: references.bib
---
# Preview
This notebook reports the morphological analysis of PDGFR-β+ cells in the striatum, cortex and perilesional regions.
**Parent dataset:** PDGFR-β stained ROIs imaged at 40x using confocal microscopy.
Animals were grouped at 0 (sham), 3, 7, 14, and 30 days post-ischemia (DPI). The raw images and pre-processing scripts (if applicable) are available at the Zenodo repository (10.5281/zenodo.10553084) under the name `Confocal_40x_ROIs_CD31-Pdgfrb-CD13.zip`.
**Working dataset**: We employed a python-based analysis pipeline to perform image processing, threshold and cell segmentation (`Confocal_40x_ROIs_Pdgfrb-Morpho_Script`). The generated images were exported to ilastik [@berg2019] to perform object classification based on the following parameters (as defined by [ilastk](https://www.ilastik.org/documentation/objects/objectfeatures.html)):
**Standard object features**
Mean intensity: mean intensity inside the object
Variance of intensity: Variance of the intensity distribution inside the object
Size in pixels: Total size of the object in pixels
Principal components of the object: Eigenvectors of the PCA on the coordinates of the object's pixels. Very roughly, this corresponds to the axes of an ellipse fit to the object. The axes are ordered starting from the one with the largest eigenvalue.
Raddi of the object: Eigenvalues of the PCA on the coordinates of the object's pixels. Very roughly, this corresponds to the radii of an ellipse fit to the object. The radii are ordered, with the largest value as first.
**2D convex hull features**
Convexity: The ratio between the areas of the object and its convex hull (<= 1)
Number of defects: Total number of defects, i.e. number of connected components in the area of the convex hull, not covered by the original object.
Convex hull area: Area of the convex hull of this object. The convex hull can be defined as the territory occupy by the cell.
Object area: Area of this object, computed from the interpixel contour (can be slightly larger than simple size of the object in pixels).
**2D skeleton features**
Average branch length: Average length of a branch in the skeleton
Number of branches: Total number of branches in the skeleton of this object.
Diameter: The longest path between two endpoints on the skeleton.
Euclidean diameter: The Euclidean distance between the endpoints (terminals) of the longest path on the skeleton
# Install and load required packages
Install and load all required packages. Please uncomment (delete #) the line code if installation is required. Load the installed libraries each time you start a new R session.
```{r}
#| label: Install_Packages
#| include: true
#| warning: false
#| message: false
#install.packages("devtools")
#library(devtools)
#install.packages(c("bayesplot", "bayestestR", "brms","dplyr", "easystats", "emmeans", "FactoMineR", "factoextra", "ggcorrplot", "ggplot", "gtsummary", "modelr", "modelsummary", "patchwork", "poorman", "tidybayes", "tidyverse", "viridis"))
library(bayesplot)
library(bayestestR)
library(brms)
library(dplyr)
library(easystats)
library(emmeans)
library(FactoMineR)
library(factoextra)
library(ggcorrplot)
library(ggplot2)
library(gtsummary)
library(modelr)
library(modelsummary)
library(patchwork)
library(poorman)
library(plyr)
library(tidybayes)
library(tidyverse)
library(viridis)
```
# Visual themes
We create a visual theme to use in our plots (ggplots).
```{r}
#| label: Plot_Theme
#| include: true
#| warning: false
#| message: false
Plot_theme <- theme_classic() +
theme(
plot.title = element_text(size=18, hjust = 0.5, face="bold"),
plot.subtitle = element_text(size = 10, color = "black"),
plot.caption = element_text(size = 12, color = "black"),
axis.line = element_line(colour = "black", size = 1.5, linetype = "solid"),
axis.ticks.length=unit(7,"pt"),
axis.title.x = element_text(colour = "black", size = 16),
axis.text.x = element_text(colour = "black", size = 16, angle = 0, hjust = 0.5),
axis.ticks.x = element_line(colour = "black", size = 1),
axis.title.y = element_text(colour = "black", size = 16),
axis.text.y = element_text(colour = "black", size = 16),
axis.ticks.y = element_line(colour = "black", size = 1),
legend.position="right",
legend.direction="vertical",
legend.title = element_text(colour="black", face="bold", size=12),
legend.text = element_text(colour="black", size=10),
plot.margin = margin(t = 10, # Top margin
r = 2, # Right margin
b = 10, # Bottom margin
l = 10) # Left margin
)
```
# Load and prepare the data set
We load and merge the individual files generated by ilastik containing the measured morphological properties of individual cells. The files are stored in a transitory object named `merged_df`.
```{r}
#| label: Pdgfrb_Morhplogy_Load
#| include: true
#| warning: false
#| message: false
# Set the path to the folder containing the CSV files
folder_path <- "Data_Raw/Confocal_40x_ROIs_Pdgfrb_Morph"
# Get a list of CSV files in the folder
csv_files <- list.files(folder_path, pattern = "*.csv", full.names = TRUE)
# Initialize an empty list to store the data
merged_data <- list()
# Loop through each CSV file
for (file in csv_files) {
# Read the CSV file
data <- read.csv(file)
# Get the file name without the extension
file_name <- tools::file_path_sans_ext(basename(file))
# Add the file name as a new column in the data
data$File_Name <- file_name
# Append the data to the merged_data list
merged_data <- c(merged_data, list(data))
}
# Combine all the data frames into a single data frame
merged_df <- do.call(rbind, merged_data)
# Print the merged data frame
print(merged_df)
merged_df$Predicted.Class <- factor(merged_df$Predicted.Class, levels = c("Amoeboid", "Perivascular", "Reticuloparenchymal", "Reticulite"))
```
Next, we clean the data set by eliminating unwanted (non-informative) columns, extracting metadata from the file name, changing columns names, and setting the data frame factors. Finally, we store the cleaned data set as a .csv file.
```{r}
#| label: Pdgfrb_Morhplogy_Clean
#| include: true
#| warning: false
#| message: false
# Eliminate unnecessary columns
Pdgfrb_Morphology <- subset(merged_df, select = c(object_id, Predicted.Class, Variance.of.Intensity, Mean.Intensity, Number.of.Defects, Convexity, Object.Area, Convex.Hull.Area, Average.Branch.Length, Number.of.Branches, Diameter, Euclidean.Diameter, File_Name))
# Extract metadata information from image name
Pdgfrb_Morphology <- cbind(Pdgfrb_Morphology, do.call(rbind , strsplit(Pdgfrb_Morphology$File_Name, "[_\\.]"))[,1:6])
# Eliminate File_Name column
Pdgfrb_Morphology <- subset(Pdgfrb_Morphology, select = -c(File_Name))
# Change column names
colnames(Pdgfrb_Morphology) <- c("ObjectID", "Class", "Intensity_sd", "Intensity_Mean", "Defects", "Convexity", "Area", "ConvexHull", "BranchLenght", "Branches", "Diameter", "EcuclideanDiameter","AnimalID", "DPI", "Condition", "Lesion", "Region", "Marker")
# Reordering the table
Pdgfrb_Morphology <- subset(Pdgfrb_Morphology, select = c("AnimalID", "DPI", "Condition", "Lesion", "Region", "Marker", "ObjectID", "Class", "Intensity_sd", "Intensity_Mean", "Defects", "Convexity", "Area", "ConvexHull", "BranchLenght", "Branches", "Diameter", "EcuclideanDiameter"))
# Setting factors
Pdgfrb_Morphology$DPI <- factor(Pdgfrb_Morphology$DPI, levels = c("3D", "7D", "14D", "30D"))
Pdgfrb_Morphology$Region <- factor(Pdgfrb_Morphology$Region, levels = c("Peri", "Str", "Ctx"))
Pdgfrb_Morphology$Class <- factor(Pdgfrb_Morphology$Class, levels = c("Amoeboid", "Perivascular", "Reticuloparenchymal", "Reticulite"))
write.csv(Pdgfrb_Morphology, "Data_Processed/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph.csv", row.names = FALSE)
gt::gt(Pdgfrb_Morphology[1:10,])
```
# Principal component analysis (PCA)
We perform principal component analysis (PCA) as a a dimensionality reduction method to handle the multiple factors of cell morphology. We use the `factoMineR` [@FactoMineR]and `factoextra` [@factoextra] packages to have access to the PCA and visualization functions.
## Define the PCA variables
Now, we select the columns for PCA.PCA performs exclusively over numeric columns. We specify `center=T` and `scale=T` arguments into the `scale` function for scaling of all variables.
```{r}
#| label: Pdgfrb_Morhplogy_PCAVariables
#| include: true
#| warning: false
#| message: false
# We load the file in case is not in the environment
Pdgfrb_Morphology <- read.csv(file = 'Data_Processed/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph.csv', header = TRUE)
# Subset variables from the data set
Pdgfrb_Morphology_Variables <- data.frame(scale(Pdgfrb_Morphology[, c(9:18)], center=T, scale=T))
```
## Obtain a correlation matrix
We obtain a correlation matrix indicating the degree of relation between the different variables. The higher the value, the higher the correlation between two variables. Conversely, the closer is to -1, the most negatively correlated they are.
```{r}
#| label: fig-Pdgfrb_Morhplogy_Matrix
#| include: true
#| warning: false
#| message: false
# Create the correlation matrix
Pdgfrb_Morphology_corr <- cor(Pdgfrb_Morphology_Variables)
# Plot and save the correlation matrix
Pdgfrb_Morphology_corr_fig <- ggcorrplot(Pdgfrb_Morphology_corr)
ggsave(
plot = Pdgfrb_Morphology_corr_fig,
filename = "plots/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_corr.png",
width = 12,
height = 10,
units = "cm")
Pdgfrb_Morphology_corr_fig
```
## Run the PCA
After, we perform the principal component analysis using the `princomp` function, using the correlation matrix stored as `Pdgfrb_Morphology_corr`. We print the numerical and graphical summaries of this step
```{r}
#| label: fig-Pdgfrb_Morhplogy_PCA
#| include: true
#| warning: false
#| message: false
#| fig-cap: Principal components for PDGFR-β+ morphology
#| fig-height: 4
#| fig-width: 5
# Perform the PCA
Pdgfrb_Morphology_PCA <- princomp(Pdgfrb_Morphology_corr)
# Print the summary
summary(Pdgfrb_Morphology_PCA)
# Plot the summary
fviz_eig(Pdgfrb_Morphology_PCA, addlabels = TRUE)
# Print the summary
Pdgfrb_Morphology_PCA$loadings[, 1:2]
```
@fig-Pdgfrb_Morhplogy_PCA The results of `summary(Pdgfr_Morphology_PCA)` show 10 principal components (Comp.1 - Comp.10) that represent the number of variables in our data frame. Each of this components explains the percentage of total variance in the data. In our case, the first component alone explains 82% of the variability. Adding a second component adds to 94%.This can be visualized in the scree plot using the `fviz_eig` function from the `factoextra`package.
On the other hand, `Pdgfr_Morphology_PCA$loadings[, 1:2]` yields the loading of the variable to each component.
## Biplot of the components attributes
We can use a biplot to witness the similarities between the variables and its impact on each component. All the variables grouped are positively correlated. Also, this plot shows the weight of each variable as distance to the point of origin. Finally, negative correlated variables are displayed in the opposite sides of the Cartesian plane. The color depicts the representation of each variable, with green are higher represented variables.
```{r}
#| label: fig-Pdgfrb_Morhplogy_Biplot
#| include: true
#| warning: false
#| message: false
#| fig-cap: Biplot for PDGFR-β+ morphology
#| fig-height: 4
#| fig-width: 5
Pdgfrb_Morphology_Biplot_fig <- fviz_pca_var(Pdgfrb_Morphology_PCA, col.var = "cos2",
gradient.cols = c("black", "orange", "darkgreen"),
repel = TRUE) +
theme_classic() +
labs(title = "") +
Plot_theme
ggsave(
plot = Pdgfrb_Morphology_Biplot_fig,
filename = "plots/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_Biplot.png",
width = 11,
height = 9,
units = "cm")
Pdgfrb_Morphology_Biplot_fig
```
## Sypder plot
To summarize the traits of the evaluated cells, we plot a spyder plot depicting the mean of selected characteristics. Considering the result from the PCA, we will include Area, ConvexHull, BranchLenght, and Intensity_Mean.
To create an sypder plot, we need to prepare the data in tiny format and summarize the variables.
```{r}
#| label: fig-Pdgfrb_Morhplogy_Spyder
#| include: true
#| warning: false
#| message: false
#| fig-cap: Spyder plot for PDGFR-β+ morphology
#| fig-height: 4
#| fig-width: 5
# Subset the variables of interest
Pdgfrb_Spyder_Variables <- subset(Pdgfrb_Morphology, select = c(Area, ConvexHull, BranchLenght, Intensity_Mean))
# Select columns containing metadata
metadata <- Pdgfrb_Morphology[,c(1:8)]
# Center the variables of interest
Pdgfrb_Spyder_VariablesCentred <- data.frame(scale(Pdgfrb_Spyder_Variables[, c(1:4)], center=T, scale=T))
# Merge the metadata and the variables of interest
Pdgfrb_Morphology_Spyder <- cbind(metadata, Pdgfrb_Spyder_VariablesCentred)
# Group by class (cell type), summarize and reshape the date set
Pdgfrb_Morphology_Spyder_Sum <- Pdgfrb_Morphology_Spyder %>%
group_by(Class) %>%
summarise(across(9:12, mean)) %>%
datawizard::reshape_longer(c("Area", "ConvexHull", "BranchLenght", "Intensity_Mean"))
# Set variables as factors and rename them
Pdgfrb_Morphology_Spyder_Sum$name <- factor(Pdgfrb_Morphology_Spyder_Sum$name, levels = c("Area", "ConvexHull", "BranchLenght", "Intensity_Mean"), labels = c("Area", "Convex Hull", "Branch Lenght", "Mean Intensity"))
Pdgfrb_Morphology_Spyder_Sum$Class <- factor(Pdgfrb_Morphology_Spyder_Sum$Class, levels = c("Perivascular", "Reticuloparenchymal", "Reticulite", "Amoeboid"))
# Create the graph
Pdgfrb_Morphology_Spyder_fig <- Pdgfrb_Morphology_Spyder_Sum %>%
ggplot(aes(
x = name,
y = value,
color = Class,
group = Class,
fill = Class
)) +
geom_polygon(linewidth = 1, alpha = 0.1) +
scale_x_discrete(name = "") +
scale_y_continuous(name = "Value (scaled)") +
coord_radar() +
theme_radar() +
theme(
legend.position="bottom",
legend.direction="vertical",
legend.title = element_text(colour="black", face="bold", size=10),
legend.text = element_text(colour="black", size=8),
legend.margin=margin(t = 0, unit='cm'))+
guides(fill=guide_legend(nrow=2,byrow=TRUE)) +
guides(color=guide_legend(nrow=2,byrow=TRUE))
# Save the graph
ggsave(
plot = Pdgfrb_Morphology_Spyder_fig,
filename = "plots/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_Spyder.png",
width = 9,
height = 15,
units = "cm")
Pdgfrb_Morphology_Spyder_fig
```
# Statistical modeling
In this case, we perform statistical modeling using a logistic regression in `brms`. The response variable "class" is modeled as a function of Area, Convex Hull, Branch Length, and Mean Intensity. In this case, we set the family to `categorical` for multinomial logistic regression model with a logit link function.
$$
Class_{i} = logit ^{-1} (\beta_{0} + \beta_{1} * Area_{i} + \beta_{2} * Convex Hull_{i} + \beta_{3} * Branch Lenght_{i} + \beta_{3} * Mean Intensityt_{i} + \epsilon_{i})
$$
This model uses the following weakly-informative priors:
$$
\begin{align}
\beta_{1} \sim Normal(0, 1) \\
\alpha \sim normal(0, 1) \\
\end{align}
$$
## Fit the model
```{r}
#| label: PDGFRMorpology_Modeling
#| include: true
#| warning: true
#| message: true
#| results: false
#| cache: true
set.seed(8807)
Pdgfrb_Morphology_Spyder$Class <- factor(Pdgfrb_Morphology_Spyder$Class, levels = c("Perivascular", "Reticuloparenchymal", "Reticulite", "Amoeboid"))
Pdgfrb_Morphology_Mdl1 <- bf(Class ~ ConvexHull + BranchLenght + Intensity_Mean)
get_prior(Pdgfrb_Morphology_Mdl1, data = Pdgfrb_Morphology_Spyder)
Pdgfrb_Morphology_prior <-
c(prior(normal(0, 1), class = "Intercept", lb = 0),
prior(normal(0, 1), class = b))
# Fit model 1
Pdgfrb_Morphology_Fit1 <-
brm(
data = Pdgfrb_Morphology_Spyder,
family = "categorical",
formula = Pdgfrb_Morphology_Mdl1,
prior = Pdgfrb_Morphology_prior,
chains = 4,
cores = 4,
warmup = 2500,
iter = 5000,
seed = 8807,
control = list(adapt_delta = 0.99, max_treedepth = 15),
file = "Models/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_Fit1.rds",
file_refit = "never")
```
## Model diagnostics
We check the model fitting with `pp_checks`
```{r}
#| label: fig-Pdgfrb_Morphology_Diagnostics
#| include: true
#| warning: false
#| message: false
#| fig-cap: Posterior predictive checks for PDGFR-β+ morphology
#| fig-height: 4
#| fig-width: 5
set.seed(8807)
color_scheme_set("darkgray")
# Model 1
Pdgfrb_Morphology_Mdl1_pp <-
brms::pp_check(Pdgfrb_Morphology_Fit1,
ndraws = 100) +
labs(title = "Posterior predictive checks (model 1)",
subtitle = "Formula: Class ~ ConvexHull + BranchLenght + Intensity_Mean") +
#scale_y_continuous(limits=c(0, 0.15)) +
Plot_theme
Pdgfrb_Morphology_Mdl1_pp
```
@fig-Pdgfrb_Morphology_Diagnostics displays a good fit between predictions and data. We can explore further the model using `shinystan`.
```{r}
#| label: Pdgfrb_Shiny
#| include: true
#| warning: false
#| message: false
#| results: false
#| cache: true
#launch_shinystan(Pdgfrb_Morphology_Fit1)
```
## Model results
### Visualize conditional effects
We plot the model using `conditional_effects` from the `brm`s package.
```{r}
#| label: fig-Pdgfrb_Morphology_CE
#| include: true
#| warning: false
#| message: false
#| fig-cap: Posterior predictive checks for PDGFR-β+ morphology
#| fig-height: 5
#| fig-width: 12
# We create the graph for convex hull
Pdgfrb_Morphology_Class <-
conditional_effects(Pdgfrb_Morphology_Fit1, categorical = TRUE)
Pdgfrb_Morphology_Convex <- plot(Pdgfrb_Morphology_Class,
plot = FALSE)[[1]]
Pdgfrb_Morphology_Convex_fig <- Pdgfrb_Morphology_Convex +
scale_y_continuous(name = expression ("P(Cell class)")) +
scale_x_continuous(name="Convex hull (scaled)") +
Plot_theme +
theme(legend.position = "none")
ggsave(
plot = Pdgfrb_Morphology_Convex_fig,
filename = "Plots/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_Fit1_Convex.png",
width = 12,
height = 10,
units = "cm")
# We create the graph for Branch length
Pdgfrb_Morphology_Branch <- plot(Pdgfrb_Morphology_Class,
plot = FALSE)[[2]]
Pdgfrb_Morphology_Branch_fig <- Pdgfrb_Morphology_Branch +
scale_y_continuous(name = expression ("P(Cell class)")) +
scale_x_continuous(name="Branch lenght (scaled)") +
Plot_theme +
theme(legend.position = "none")
ggsave(
plot = Pdgfrb_Morphology_Branch_fig,
filename = "Plots/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_Fit1_Branch.png",
width = 12,
height = 10,
units = "cm")
# We create the graph for Intensity
Pdgfrb_Morphology_Inten <- plot(Pdgfrb_Morphology_Class,
plot = FALSE)[[3]]
Pdgfrb_Morphology_Inten_fig <- Pdgfrb_Morphology_Inten +
scale_y_continuous(name = expression ("Pr(Cell class)")) +
scale_x_continuous(name="Intensity (scaled)") +
Plot_theme +
theme(legend.position = "none")
ggsave(
plot = Pdgfrb_Morphology_Inten_fig,
filename = "Plots/Confocal_40x_ROIs_Pdgfrb_Morph/Confocal_40x_ROIs_Pdgfrb_Morph_Fit1_Intensity.png",
width = 12,
height = 10,
units = "cm")
Pdgfrb_Morphology_Convex_fig | Pdgfrb_Morphology_Branch_fig | Pdgfrb_Morphology_Inten_fig
```
### Posterior summary
Next, we plot the posterior summary for both models using the `describe_posterior` function:
```{r}
#| label: Pdgfrb_Morph_Posterior
#| include: true
#| warning: false
#| message: false
describe_posterior(
Pdgfrb_Morphology_Fit1,
effects = "all",
test = c("p_direction", "rope"),
component = "all",
centrality = "median")
modelsummary(Pdgfrb_Morphology_Fit1,
shape = term ~ model + statistic,
centrali2ty = "mean",
title = "Probability of PDGFR-β+ cells types following MCAO",
statistic = "conf.int",
gof_omit = 'ELPD|ELDP s.e|LOOIC|LOOIC s.e|WAIC|RMSE',
output = "Tables/html/Confocal_40x_ROIs_Pdgfrb_Morph_Fit1_Table.html",
)
Pdgfrb_Morphology_Fit1_Table <- modelsummary(Pdgfrb_Morphology_Fit1,
shape = term ~ model + statistic,
centrality = "mean",
statistic = "conf.int",
gof_omit = 'ELPD|ELDP s.e|LOOIC|LOOIC s.e|WAIC|RMSE',
output = "gt")
gt::gtsave (Pdgfrb_Morphology_Fit1_Table,
filename = "Tables/tex/Confocal_40x_ROIs_Pdgfrb_Morph_Fit1_Table.tex")
```
# References
::: {#refs}
:::