-
Notifications
You must be signed in to change notification settings - Fork 1
/
Widefield_10x_Ipsilateral_Ki67_PPA.qmd
480 lines (351 loc) · 17.6 KB
/
Widefield_10x_Ipsilateral_Ki67_PPA.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
---
title-block-banner: true
title: "Point pattern analysis (PPA) for Ki67 expression in the ipsilateral hemisphere"
subtitle: "Data analysis notebook"
date: today
date-format: full
author:
- name: "Daniel Manrique-Castano"
orcid: 0000-0002-1912-1764
degrees:
- PhD
affiliation:
- name: Univerisity Laval
department: Psychiatry and Neuroscience
group: Laboratory of neurovascular interactions
note: "GitHub: https://daniel-manrique.github.io/"
keywords:
- Ki67
- PDGFRβ
- Brain injury
- Cell proliferation
- Bayesian modeling
license: "CC BY"
format:
pdf:
toc: true
number-sections: true
colorlinks: true
html:
code-fold: true
embed-resources: true
toc: true
toc-depth: 2
toc-location: left
number-sections: true
theme: spacelab
knitr:
opts_chunk:
warning: false
message: false
csl: science.csl
bibliography: references.bib
---
# Preview
This notebook performs the point pattern analysis for Ki67 in the ipsilateral hemisphere following cerebral ischemia.
**Parent dataset:** Ki67 and PDGFRβ stained ischemic hemispheres imaged at 10x (with stitching). Samples are grouped at 0 (Sham), 3, 7, 14, and 30 days post-ischemia (DPI). The raw images and pre-processing scripts (if applicable) are available at the Zenodo repository (10.5281/zenodo.10553084) under the name `Widefield_10x_Ipsilateral_Ki67-Pdgfrb(a).zip` and `Widefield_10x_Ipsilateral_Ki67-Pdgfrb(a).zip` Given the weight of the files we must compile two different .zip files.
**Working dataset**: The `Data_Raw/Widefield_10x_Ipsilateral_Ki67-Pdgfrb_Coloc/Ki67_Filtered.csv` and `Data_Raw/Widefield_10x_Ipsilateral_Ki67-Pdgfrb_Coloc/Pdgfrb_Filtered.csv` and `Data_Raw/Widefield_10x_Ipsilateral_Ki67-Pdgfrb_Coloc/Pdgfrb_Ki67_Colocalized.csv`data frames contains the coordinates of PDGFRβ and Ki67+ cells obtained with CellProfiler [@stirling2021]. The CellProfiler pipeline is available at (https://osf.io/wdzk7).
# Install and load required packages
Install and load all required packages. Please uncomment (delete #) the line code if installation is required. Load the installed libraries each time you start a new R session.
```{r}
#| label: Install_Packages
#| include: true
#| warning: false
#| message: false
#install.packages("devtools")
#library(devtools)
#install.packages(c("dplyr", "ggplot","plyr", "spatstat", "tidyverse"))
library(dplyr)
library(ggplot2)
library(plyr)
library(spatstat)
library(tidyverse)
```
# Visual themes
We create a visual theme to use in our plots (ggplots).
```{r}
#| label: Plot_Theme
#| include: true
#| warning: false
#| message: false
Plot_theme <- theme_classic() +
theme(
plot.title = element_text(size=18, hjust = 0.5, face="bold"),
plot.subtitle = element_text(size = 10, color = "black"),
plot.caption = element_text(size = 12, color = "black"),
axis.line = element_line(colour = "black", size = 1.5, linetype = "solid"),
axis.ticks.length=unit(7,"pt"),
axis.title.x = element_text(colour = "black", size = 16),
axis.text.x = element_text(colour = "black", size = 16, angle = 0, hjust = 0.5),
axis.ticks.x = element_line(colour = "black", size = 1),
axis.title.y = element_text(colour = "black", size = 16),
axis.text.y = element_text(colour = "black", size = 16),
axis.ticks.y = element_line(colour = "black", size = 1),
legend.position="right",
legend.direction="vertical",
legend.title = element_text(colour="black", face="bold", size=12),
legend.text = element_text(colour="black", size=10),
plot.margin = margin(t = 10, # Top margin
r = 2, # Right margin
b = 10, # Bottom margin
l = 10) # Left margin
)
```
# Load and handle the datasets
We load the `Ki67_Filtered.csv`,`Pdgfrb_Filtered.csv` and `Pdgfrb_Ki67_Colocalized.csv` data sets. These are heavy data sets containing information about individual cells detected in the ipsilateral hemisphere.
```{r}
#| label: tbl-Klf4_Table
#| include: true
#| warning: false
#| message: false
#| tbl-cap: "Data set"
#| column: margin
# We load the dataset in case is not present in the R environment
Ki67_Cells <- read.csv(file = "Data_Raw/Widefield_10x_Ipsilateral_Ki67-Pdgfrb/Ki67_Filtered.csv", header = TRUE)
Pdgfrb_Cells <- read.csv(file = "Data_Raw/Widefield_10x_Ipsilateral_Ki67-Pdgfrb/Pdgfrb_Filtered.csv", header = TRUE)
Coloc_Cells <- read.csv(file = "Data_Raw/Widefield_10x_Ipsilateral_Ki67-Pdgfrb/Pdgfrb_Ki67_Colocalized.csv", header = TRUE)
gt::gt(Ki67_Cells[1:10,])
```
Given the weight of these files, they are not provided in the GitHub repository but in the OSF repository. From the tables (taking Ki67_Cells as an example), we are interested in the `FileName_Ki67_Color`column containing the identification data for the images, and `Location_Center_X` and `Location_Center_Y`signaling the xy coordinates of each Ki67+ cells. The same apply for Pdgfrb_Cells and Coloc_Cells.
Next, we subset the dataset to select the columns of interest and give them meaningful names.
```{r}
#| label: tbl-Dataset_Handle
#| include: true
#| warning: false
#| message: false
#| tbl-cap: "Data set"
### For Ki67
## We subset the relevant columns (cell number)
Ki67_Data <- subset(Ki67_Cells, select = c("FileName_Ki67_Color", "Location_Center_X", "Location_Center_Y"))
## And extract metadata from the image name
Ki67_Data <- cbind(Ki67_Data, do.call(rbind , strsplit(Ki67_Data$FileName_Ki67_Color, "[_\\.]"))[,1:2])
Ki67_Data <- subset(Ki67_Data, select = -c(FileName_Ki67_Color))
## We Rename the relevant columns
colnames(Ki67_Data) <- c("CenterX", "CenterY", "MouseID", "DPI")
## We set the factors
Ki67_Data$DPI <- factor(Ki67_Data$DPI, levels = c("0D", "3D", "7D", "14D", "30D"))
write.csv(Ki67_Data, "Data_Processed/Widefield_10x_Ipsilateral_Ki67-Pdgfrb/Widefield_10x_Ipsilateral_Ki67_Cells.csv", row.names = FALSE)
### For Pdgfrb
## We subset the relevant columns (cell number)
Pdgfrb_Data <- subset(Pdgfrb_Cells, select = c("FileName_Pdgfrb_Color", "Location_Center_X", "Location_Center_Y"))
## And extract metadata from the image name
Pdgfrb_Data <- cbind(Pdgfrb_Data, do.call(rbind , strsplit(Pdgfrb_Data$FileName_Pdgfrb_Color, "[_\\.]"))[,1:2])
Pdgfrb_Data <- subset(Pdgfrb_Data, select = -c(FileName_Pdgfrb_Color))
## We Rename the relevant columns
colnames(Pdgfrb_Data) <- c("CenterX", "CenterY", "MouseID", "DPI")
## We set the factors
Pdgfrb_Data$DPI <- factor(Pdgfrb_Data$DPI, levels = c("0D", "3D", "7D", "14D", "30D"))
write.csv(Pdgfrb_Data, "Data_Processed/Widefield_10x_Ipsilateral_Ki67-Pdgfrb/Widefield_10x_Ipsilateral_Pdgfrb_Cells.csv", row.names = FALSE)
### For Coloc
## We subset the relevant columns (cell number)
Coloc_Data <- subset(Coloc_Cells, select = c("FileName_Ki67_Color", "Location_Center_X", "Location_Center_Y"))
## And extract metadata from the image name
Coloc_Data <- cbind(Coloc_Data, do.call(rbind , strsplit(Coloc_Data$FileName_Ki67_Color, "[_\\.]"))[,1:2])
Coloc_Data <- subset(Coloc_Data, select = -c(FileName_Ki67_Color))
## We Rename the relevant columns
colnames(Coloc_Data) <- c("CenterX", "CenterY", "MouseID", "DPI")
## We set the factors
Coloc_Data$DPI <- factor(Coloc_Data$DPI, levels = c("0D", "3D", "7D", "14D", "30D"))
write.csv(Coloc_Data, "Data_Processed/Widefield_10x_Ipsilateral_Ki67-Pdgfrb/Widefield_10x_Ipsilateral_Coloc_Cells.csv", row.names = FALSE)
```
With the data handled, we create point patterns to perform point pattern analysis (PPA). With this approach, we can estimate the spatial intensity of colocalized cells and their distribution relative to covariates. For more information on PPA, please refer to the `Widefield_5x_Ipsilateral_Gfap-Pdgfrb_Covariance`notebook.
# Generate and handle point patterns
We use functions from the `spatstat' package to create point patterns based on the coordinates of individual cells. The point patterns are then stored in a hyperframe and can be loaded into R as an R-object.
```{r}
#| label: Ki67-Pdgfrb_PointPatterns
#| include: true
#| warning: false
#| message: false
# Initialize the hyperframe as NULL at the start
Result_Hyperframe <- NULL
# Adjusted add_to_hyperframe function to dynamically build the hyperframe
add_to_hyperframe <- function(...) {
if (is.null(Result_Hyperframe)) {
Result_Hyperframe <<- hyperframe(...)
} else {
Result_Hyperframe <<- tryCatch({
rbind(Result_Hyperframe, hyperframe(...))
}, error = function(e) {
cat("Error in rbind: ", e$message, "\n")
})
}
}
# Adjusted function to create point patterns
create_point_pattern <- function(Data_Subset) {
xlim <- range(Data_Subset$CenterX)
ylim <- range(Data_Subset$CenterY)
Cells_PPP <- spatstat.geom::ppp(x = Data_Subset$CenterX, y = Data_Subset$CenterY, xrange = xlim, yrange = ylim)
unitname(Cells_PPP) <- list("mm", "mm", 1.936/6624)
Cells_PPP <- spatstat.geom::rescale(Cells_PPP)
return(Cells_PPP)
}
# Iterate over unique MouseIDs to process and create point patterns for both Klf4 and Dapi
mouse_ids <- unique(Ki67_Data$MouseID)
for (mouse_id in mouse_ids) {
Subset_Ki67 <- Ki67_Data[Ki67_Data$MouseID == mouse_id, ]
Subset_Pdgfrb <- Pdgfrb_Data[Pdgfrb_Data$MouseID == mouse_id, ]
Subset_Coloc <- Coloc_Data[Coloc_Data$MouseID == mouse_id, ]
if(nrow(Subset_Ki67) > 0 && nrow(Subset_Pdgfrb) > 0) {
Ki67_PPP <- create_point_pattern(Subset_Ki67)
Pdgfrb_PPP <- create_point_pattern(Subset_Pdgfrb)
Coloc_PPP <- create_point_pattern(Subset_Coloc)
# Set the observation window for Klf4 based on Dapi's convex hull
Window(Ki67_PPP) <- convexhull(Pdgfrb_PPP)
Window(Pdgfrb_PPP) <- convexhull(Pdgfrb_PPP)
Window(Coloc_PPP) <- convexhull(Pdgfrb_PPP)
dpi2_value <- unique(Subset_Ki67$DPI)[1]
add_to_hyperframe(Ki67 = Ki67_PPP, Pdgfrb = Pdgfrb_PPP, Coloc = Coloc_PPP, ID = as.character(mouse_id), DPI = as.factor(dpi2_value), stringsAsFactors = TRUE)
} else {
message(sprintf("Skipping MouseID %s due to insufficient data.\n", mouse_id))
}
}
# Save the Result_Hyperframe
Result_Hyperframe$DPI <- factor(Result_Hyperframe$DPI, levels = c("0D", "3D", "7D", "14D", "30D"))
saveRDS(Result_Hyperframe, "PointPatterns/Widefield_10x_Ipsilateral_Ki67-Pdgfrb_PPP.rds")
```
The point patterns are stored as an R-object. In the next chunk, we load the point patterns and add density kernels. Please check the `Widefield_5x_Ipsilateral_Pdgfrb-Gfap_Covariance`notebook for more information in this regard.
# Calculate density kernels
We use the `density` function to calculate density kernels with a sigma of 0.02.
```{r}
#| label: Ki67-Pdgfrb_Densitykernels
#| include: true
#| warning: false
#| message: false
# Load the point patterns
PointPatterns <- readRDS("PointPatterns/Widefield_10x_Ipsilateral_Ki67-Pdgfrb_PPP.rds")
# Add density kernels to the hyperframe
PointPatterns$Ki67_Density <- with (PointPatterns, density(Ki67, sigma = 0.02))
PointPatterns$Pdgfrb_Density <- with (PointPatterns, density(Pdgfrb, sigma = 0.02))
PointPatterns$Coloc_Density <- with (PointPatterns, density(Coloc, sigma = 0.02))
```
## Plot density kernels
We plot some examples of the density kernels. Please note that the coordinates are y-fliped for unknown reason to us.
```{r}
#| label: fig-Ki67_Plotkernels
#| include: true
#| warning: false
#| message: false
#| fig-cap: Example density kernels for Ki67/Pdgfrb
#| column: screen-inset-shaded
#| layout-nrow: 1
Pdgfrb_Colmap <- colourmap(topo.colors(256), range = c(0, 80000))
par(mfrow = c(2,5), mar=c(1,1,1,1), oma=c(1,1,1,1))
## For Pdgfrb (density) and Ki67 (dots)
plot(PointPatterns$Pdgfrb_Density$`138`, col = Pdgfrb_Colmap, main = "0 DPI")
plot(PointPatterns$Ki67$`138`, add = TRUE, pch = 16, cex= 0.4, col = "black")
plot(PointPatterns$Coloc$`138`, add = TRUE, pch = 16, cex= 0.4, col = "red")
plot(PointPatterns$Pdgfrb_Density$`140`, col = Pdgfrb_Colmap, main = "3 DPI")
plot(PointPatterns$Ki67$`140`, add = TRUE, pch = 16, cex= 0.4, col = "black")
plot(PointPatterns$Coloc$`140`, add = TRUE, pch = 16, cex= 0.4, col = "red")
plot(PointPatterns$Pdgfrb_Density$`130`, col = Pdgfrb_Colmap, main = "7 DPI")
plot(PointPatterns$Ki67$`130`, add = TRUE, pch = 16, cex= 0.4, col = "black")
plot(PointPatterns$Coloc$`130`, add = TRUE, pch = 16, cex= 0.4, col = "red")
plot(PointPatterns$Pdgfrb_Density$`122`, col = Pdgfrb_Colmap, main = "14 DPI")
plot(PointPatterns$Ki67$`122`, add = TRUE, pch = 16, cex= 0.4, col = "black")
plot(PointPatterns$Coloc$`122`, add = TRUE, pch = 16, cex= 0.4, col = "red")
plot(PointPatterns$Pdgfrb_Density$`113`, col = Pdgfrb_Colmap, main = "30 DPI")
plot(PointPatterns$Ki67$`113`, add = TRUE, pch = 16, cex= 0.4, col = "black")
plot(PointPatterns$Coloc$`113`, add = TRUE, pch = 16, cex= 0.4, col = "red")
```
@fig-Ki67_Plotkernels shows examples per DPI.
# Modeling point pattern process
Now, we use the `mppm` function from `spatstat` [@spatstat]to fit a **log-linear model** for replicated point patterns. This model allow us to quantify Ki67 allocation changes conditional on the spatial intensity (density) of PDGFRβ in the ischemic hemisphere. We the PDGFRβ spatial intensity as predictor. The model specification is as follows:
$$
Ki67_i(x) \sim \text{Poisson}(\lambda(x, \text{DPI}_i))
$$
where $i$ indexes the point pattern (corresponding to a unique DPI), and $x$ represents the spatial intensity of PDGFRβ. The intensity function $\lambda(x, \text{DPI}_i)$ is modeled as:
$$
\log(\lambda(x, \text{DPI}_i)) = \beta_0 + \beta_1 x + u_{0i} + u_{1i}x
$$ Where $\beta_0$ and $\beta_1$ are fixed effects, representing the baseline log intensity of Ki67 expression and the effect of the PDGFRβ spatial intensity, respectively.$u_{0i}$ and $u_{1i}$ are random effects for the intercept and slope, varying by DPI, to capture the variability in Ki67 expression its spatial variation across different injury stages.
## Fit the mppm model
We fit the model using the `mppm` function for replicated point patterns:
```{r}
#| label: Ki67_mppm
#| include: true
#| warning: false
#| message: false
#| fig-height: 5
#| fig-width: 9
Ki67_mppm <- mppm(Ki67 ~ Pdgfrb_Density, random = ~ Pdgfrb_Density | DPI, data = PointPatterns)
summary(Ki67_mppm)
```
The results of this Poisson regression are presented in the log scale. Here, we see the Intercept (8.7), the baseline of Ki67 log-spatial intensity at 0 DPI.The slope (7.2) indicates that the spatial intensity of Ki67 increases with PDGFRβ spatial intensity. Now, the random effects account for variations that occur at different injury stages. We see that 3D is -1.45, indicating a lower baseline intensity for Ki67 at this stage, while at 14D we see a higher baseline intensity (0.80). The slopes in the random intercepts indicate the adjusted rate change with PDGFRβ spatial intensity. At 0D, a negative adjustment (-2.12) denotes that the decrease in Ki67 intensity is less pronounced or even reversed at this stage. On the other hand, the negative adjustment at 14D (-5.16) means the decrease is more pronounced.
Overall, these results indicate that Ki67 is expressed in regions populated by (reactive) PDGFRβ cells, specially at 3 and 7 DPI. We generate a representative visualization using `rhohat` to visualize this trend.
First, we subset the point patterns
```{r}
#| label: Ki67_Subset
#| include: true
#| warning: false
#| message: false
PointPatterns_7D <- subset(PointPatterns, DPI=="7D", select = 1:8)
PointPatterns_30D <- subset(PointPatterns, DPI=="30D", select = 1:8)
```
Now, we calculate the relative distribution of Ki67 conditional of the spatial intensity of PDGFRβ+ cells.
```{r}
#| label: Ki67_Rhohat
#| include: true
#| warning: false
#| message: false
# For 7 DPI
Ki67_7D <- with(PointPatterns_7D, spatstat.explore::rhohat.ppp(Ki67, Pdgfrb_Density, do.CI = FALSE))
Ki67_7D <- pool(Ki67_7D)
# For 30 DPI
Ki67_30D <- with(PointPatterns_30D, spatstat.explore::rhohat.ppp(Ki67, Pdgfrb_Density, do.CI = FALSE))
Ki67_30D <- pool(Ki67_30D)
```
Finally, we plot the `rhohat`.
## Plot the rhohat
Now, we plot the calculated relative distribution.
```{r}
#| label: Ki67_Rhohat_Plot
#| include: true
#| warning: false
#| message: false
## For 7D
png("Plots/Widefield_10x_Ki67-Pdgfrb_Coloc/Ki67_Pdgfrb_Rhohat_7D.png", width = 700, height = 350)
par(mar=c(7,8,2,2))
par(las=1)
plot(Ki67_7D,
shade = c("lorho", "hirho"),
main=NULL,
las=1,
legendargs=list(xpd=TRUE),
lwd = 6,
legend=FALSE,
xlab = "",
ylab = "",
xaxt = "n",
yaxt = "n")
axis(1, at = seq(0, 18000, 3000), labels = c("0", "3k", "6k", "9k", "12k", "15k", "18k"), cex.axis=2.5, padj = 0.5, lwd.ticks = 5)
axis(2, at = seq(0, 18000, 3000), labels = c("0", "3k", "6k", "9k", "12k", "15k", "18k"), cex.axis=2.5, padj = 0.5, lwd.ticks = 5)
title(xlab = "PDGFRβ (intensity)", mgp = c(4.5, 1, 0), cex.lab = 3)
title(ylab = "p(Ki67)", mgp = c(5, 1, 0), cex.lab = 3)
dev.off()
## For 30D
png("Plots/Widefield_10x_Ki67-Pdgfrb_Coloc/Ki67_Pdgfrb_Rhohat_30D.png", width = 700, height = 350)
par(mar=c(7,8,2,2))
par(las=1)
plot(Ki67_30D,
shade = c("lorho", "hirho"),
main=NULL,
las=1,
legendargs=list(xpd=TRUE),
lwd = 6,
legend=FALSE,
xlab = "",
ylab = "",
xaxt = "n",
yaxt = "n")
axis(1, at = seq(0, 30000, 5000), labels = c("0", "5k", "10k", "15k", "20k", "25k", "30k"), cex.axis=2.5, padj = 0.5, lwd.ticks = 5)
axis(2, at = seq(0, 18000, 3000), labels = c("0", "3k", "6k", "9k", "12k", "15k", "18k"), cex.axis=2.5, padj = 0.5, lwd.ticks = 5)
title(xlab = "PDGFRβ (intensity)", mgp = c(4.5, 1, 0), cex.lab = 3)
title(ylab = "p(Ki67)", mgp = c(5, 1, 0), cex.lab = 3)
dev.off()
```
The images are saved in a dedicated folder and displayed in the research article.
# References
::: {#refs}
:::
```{r}
sessionInfo()
```