Run in your console,
git clone https://github.com/deviavir/zenbot.git
Or, without git,
wget https://github.com/deviavir/zenbot/archive/master.tar.gz
tar -xf zenbot-master.tar.gz
mv zenbot-master zenbot
Create your configuration file by copying conf-sample.js
to conf.js
:
cp conf-sample.js conf.js
- View and edit
conf.js
. - It's possible to use zenbot in "paper trading" mode without making any changes.
- You must add your exchange API keys to enable real trading however.
- API keys do NOT need deposit/withdrawal permissions.
If using Docker, skip to section "Docker" below.
Install dependencies:
cd zenbot
npm install
# optional, installs the `zenbot.sh` binary in /usr/local/bin:
npm link
sudo apt-get update
sudo apt-get upgrade -y
sudo apt-get install build-essential mongodb -y
curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -
sudo apt-get install -y nodejs
git clone https://github.com/deviavir/zenbot.git
cd zenbot
npm install
./zenbot.sh trade --paper
To run Zenbot under Docker, install Docker, Docker Compose, Docker Machine (if necessary) You can follow instructions at https://docs.docker.com/compose/install/
After installing (step 2 above),
cd zenbot
docker-compose up (-d if you don't want to see the log)
If you are running windows use the following command
docker-compose --file=docker-compose-windows.yml up
If you wish to run commands (e.g. backfills, list-selectors), you can run this separate command after a successful docker-compose up -d
:
docker-compose exec server zenbot list-selectors
docker-compose exec server zenbot backfill <selector> --days <days>
In case you are behind on updates, you can run:
docker pull deviavir/zenbot:unstable
And re-run docker-compose up -d
to start the new image.
deviavir/zenbot
is automatically updated after every merge.
You can follow the tags/builds here: https://hub.docker.com/r/deviavir/zenbot/builds/
A "selector" is a short identifier that tells Zenbot which exchange and currency pair to act on. Use the form {exchange_slug}.{asset}-{currency}
. A complete list of selectors your Zenbot install supports can be found with:
zenbot list-selectors
gdax:
gdax.BTC-EUR (BTC/EUR)
gdax.BTC-GBP (BTC/GBP)
gdax.BTC-USD (BTC/USD)
gdax.ETH-BTC (ETH/BTC)
gdax.ETH-USD (ETH/USD)
gdax.LTC-BTC (LTC/BTC)
gdax.LTC-USD (LTC/USD)
poloniex:
poloniex.AMP-BTC (Synereo AMP/BTC)
poloniex.ARDR-BTC (Ardor/BTC)
poloniex.BCN-BTC (Bytecoin/BTC)
poloniex.BCN-XMR (Bytecoin/XMR)
poloniex.BCY-BTC (BitCrystals/BTC)
...etc
To backfill data (provided that your chosen exchange supports it), use:
zenbot backfill <selector> --days <days>
You can also select start and end date:
zenbot backfill <selector> --start="Unixtime in ms" --end="Unixtime in ms"
Note you can use them separately.
After you've backfilled, you can run a simulation:
zenbot sim <selector> [options]
For a list of options for the sim
command, use:
zenbot sim --help
For additional options related to the strategy, use:
zenbot list-strategies
- By default the sim will start with 1000 units of currency. Override with
--currency_capital
and--asset_capital
. - Open
sim_result.html
in your browser to see a candlestick graph with trades.
Zenbot outputs an HTML graph of each simulation result. In the screenshot below, the pink arrows represent the bot buying (up arrow) and selling (down arrow) as it iterated the historical data of GDAX exchange's BTC/USD product.
end balance 2954.50 (195.45%)
buy hold 1834.44 (83.44%)
vs. buy hold 61.06%
110 trades over 91 days (avg 1.21 trades/day)
Zenbot started with $1,000 USD and ended with $2,954.50 after 90 days, making 195% ROI! In spite of a buy/hold strategy returning a respectable 83.44%, Zenbot has considerable potential for beating buy/holders.
- Note that this example used tweaked settings to achieve optimal return:
--profit_stop_enable_pct=10
,--profit_stop_pct=4
,--trend_ema=36
, and--sell_rate=-0.006
. Default parameters yielded around 65% ROI. - Raw data from simulation
The following command will launch the bot, and if you haven't touched c.selector
in conf.js
, will trade the default BTC/USD pair on GDAX.
zenbot trade [--paper] [--manual]
Use the --paper
flag to only perform simulated trades while watching the market.
Use the --manual
flag to watch the price and account balance, but do not perform trades automatically.
Here's how to run a different selector (example: ETH-BTC on Poloniex):
zenbot trade poloniex.eth-btc
For a full list of options for the trade
command, use:
zenbot trade --help
Usage: trade [options] [selector]
run trading bot against live market data
Options:
--conf <path> path to optional conf overrides file
--strategy <name> strategy to use
--order_type <type> order type to use (maker/taker)
--paper use paper trading mode (no real trades will take place)
--manual watch price and account balance, but do not perform trades automatically
--non_interactive disable keyboard inputs to the bot
--currency_capital <amount> for paper trading, amount of start capital in currency
--asset_capital <amount> for paper trading, amount of start capital in asset
--avg_slippage_pct <pct> avg. amount of slippage to apply to paper trades
--buy_pct <pct> buy with this % of currency balance
--deposit <amt> absolute initial capital (in currency) at the bots disposal (previously --buy_max_amt)
--sell_pct <pct> sell with this % of asset balance
--markdown_buy_pct <pct> % to mark down buy price
--markup_sell_pct <pct> % to mark up sell price
--order_adjust_time <ms> adjust bid/ask on this interval to keep orders competitive
--order_poll_time <ms> poll order status on this interval
--sell_stop_pct <pct> sell if price drops below this % of bought price
--buy_stop_pct <pct> buy if price surges above this % of sold price
--profit_stop_enable_pct <pct> enable trailing sell stop when reaching this % profit
--profit_stop_pct <pct> maintain a trailing stop this % below the high-water mark of profit
--max_sell_loss_pct <pct> avoid selling at a loss pct under this float
--max_buy_loss_pct <pct> avoid buying at a loss pct over this float
--max_slippage_pct <pct> avoid selling at a slippage pct above this float
--rsi_periods <periods> number of periods to calculate RSI at
--poll_trades <ms> poll new trades at this interval in ms
--currency_increment <amount> Currency increment, if different than the asset increment
--keep_lookback_periods <amount> Keep this many lookback periods max.
--exact_buy_orders instead of only adjusting maker buy when the price goes up, adjust it if price has changed at all
--exact_sell_orders instead of only adjusting maker sell when the price goes down, adjust it if price has changed at all
--use_prev_trades load and use previous trades for stop-order triggers and loss protection
--min_prev_trades minimum number of previous trades to load if use_prev_trades is enabled, set to 0 to disable and use trade time instead
--disable_stats disable printing order stats
--reset_profit start new profit calculation from 0
--use_fee_asset Using separated asset to pay for fees. Such as binance's BNB or Huobi's HT
--run_for <minutes> Execute for a period of minutes then exit with status 0 (default: null)
--debug output detailed debug info
-h, --help output usage information
and also:
zenbot list-strategies
bollinger
description:
Buy when (Signal ≤ Lower Bollinger Band) and sell when (Signal ≥ Upper Bollinger Band).
options:
--period=<value> period length, same as --period_length (default: 1h)
--period_length=<value> period length, same as --period (default: 1h)
--min_periods=<value> min. number of history periods (default: 52)
--bollinger_size=<value> period size (default: 20)
--bollinger_time=<value> times of standard deviation between the upper band and the moving averages (default: 2)
--bollinger_upper_bound_pct=<value> pct the current price should be near the bollinger upper bound before we sell (default: 0)
--bollinger_lower_bound_pct=<value> pct the current price should be near the bollinger lower bound before we buy (default: 0)
cci_srsi
description:
Stochastic CCI Strategy
options:
--period=<value> period length, same as --period_length (default: 20m)
--period_length=<value> period length, same as --period (default: 20m)
--min_periods=<value> min. number of history periods (default: 30)
--ema_acc=<value> sideways threshold (0.2-0.4) (default: 0.03)
--cci_periods=<value> number of RSI periods (default: 14)
--rsi_periods=<value> number of RSI periods (default: 14)
--srsi_periods=<value> number of RSI periods (default: 9)
--srsi_k=<value> %K line (default: 5)
--srsi_d=<value> %D line (default: 3)
--oversold_rsi=<value> buy when RSI reaches or drops below this value (default: 18)
--overbought_rsi=<value> sell when RSI reaches or goes above this value (default: 85)
--oversold_cci=<value> buy when CCI reaches or drops below this value (default: -90)
--overbought_cci=<value> sell when CCI reaches or goes above this value (default: 140)
--constant=<value> constant (default: 0.015)
If you have questions about this strategy, contact me... @talvasconcelos
crossover_vwap
description:
Estimate trends by comparing "Volume Weighted Average Price" to the "Exponential Moving Average".
options:
--period=<value> period length, same as --period_length (default: 120m)
--period_length=<value> period length, same as --period (default: 120m)
--emalen1=<value> Length of EMA 1 (default: 30)
--smalen1=<value> Length of SMA 1 (default: 108)
--smalen2=<value> Length of SMA 2 (default: 60)
--vwap_length=<value> Min periods for vwap to start (default: 10)
--vwap_max=<value> Max history for vwap. Increasing this makes it more sensitive to short-term changes (default: 8000)
dema
description:
Buy when (short ema > long ema) and sell when (short ema < long ema).
options:
--period=<value> period length (default: 1h)
--min_periods=<value> min. number of history periods (default: 21)
--ema_short_period=<value> number of periods for the shorter EMA (default: 10)
--ema_long_period=<value> number of periods for the longer EMA (default: 21)
--up_trend_threshold=<value> threshold to trigger a buy signal (default: 0)
--down_trend_threshold=<value> threshold to trigger a sold signal (default: 0)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 9)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 80)
--noise_level_pct=<value> do not trade when short ema is with this % of last short ema, 0 disables this feature (default: 0)
macd
description:
Buy when (MACD - Signal > 0) and sell when (MACD - Signal < 0).
options:
--period=<value> period length, same as --period_length (default: 1h)
--period_length=<value> period length, same as --period (default: 1h)
--min_periods=<value> min. number of history periods (default: 52)
--ema_short_period=<value> number of periods for the shorter EMA (default: 12)
--ema_long_period=<value> number of periods for the longer EMA (default: 26)
--signal_period=<value> number of periods for the signal EMA (default: 9)
--up_trend_threshold=<value> threshold to trigger a buy signal (default: 0)
--down_trend_threshold=<value> threshold to trigger a sold signal (default: 0)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 70)
momentum
description:
MOM = Close(Period) - Close(Length)
options:
--momentum_size=<value> number of periods to look back for momentum (default: 5)
neural
description:
Use neural learning to predict future price. Buy = mean(last 3 real prices) < mean(current & last prediction)
options:
--period=<value> period length - make sure to lower your poll trades time to lower than this value. Same as --period_length (default: 1m)
--period_length=<value> period length - make sure to lower your poll trades time to lower than this value. Same as --period (default: 1m)
--activation_1_type=<value> Neuron Activation Type: sigmoid, tanh, relu (default: sigmoid)
--neurons_1=<value> Neurons in layer 1 Shoot for atleast 100 (default: 1)
--depth=<value> Rows of data to predict ahead for matches/learning (default: 1)
--selector=<value> Selector (default: Gdax.BTC-USD)
--min_periods=<value> Periods to calculate learn from (default: 1000)
--min_predict=<value> Periods to predict next number from (default: 1)
--momentum=<value> momentum of prediction (default: 0.9)
--decay=<value> decay of prediction, use teeny tiny increments (default: 0.1)
--threads=<value> Number of processing threads you'd like to run (best for sim) (default: 1)
--learns=<value> Number of times to 'learn' the neural network with past data (default: 2)
noop
description:
Just do nothing. Can be used to e.g. for training the strategy.
options:
--period=<value> period length, same as --period_length (default: 30m)
--period_length=<value> period length, same as --period (default: 30m)
rsi
description:
Attempts to buy low and sell high by tracking RSI high-water readings.
options:
--period=<value> period length, same as --period_length (default: 2m)
--period_length=<value> period length, same as --period (default: 2m)
--min_periods=<value> min. number of history periods (default: 52)
--rsi_periods=<value> number of RSI periods
--oversold_rsi=<value> buy when RSI reaches or drops below this value (default: 30)
--overbought_rsi=<value> sell when RSI reaches or goes above this value (default: 82)
--rsi_recover=<value> allow RSI to recover this many points before buying (default: 3)
--rsi_drop=<value> allow RSI to fall this many points before selling (default: 0)
--rsi_divisor=<value> sell when RSI reaches high-water reading divided by this value (default: 2)
sar
description:
Parabolic SAR
options:
--period=<value> period length, same as --period_length (default: 2m)
--period_length=<value> period length, same as --period (default: 2m)
--min_periods=<value> min. number of history periods (default: 52)
--sar_af=<value> acceleration factor for parabolic SAR (default: 0.015)
--sar_max_af=<value> max acceleration factor for parabolic SAR (default: 0.3)
speed
description:
Trade when % change from last two 1m periods is higher than average.
options:
--period=<value> period length, same as --period_length (default: 1m)
--period_length=<value> period length, same as --period (default: 1m)
--min_periods=<value> min. number of history periods (default: 3000)
--baseline_periods=<value> lookback periods for volatility baseline (default: 3000)
--trigger_factor=<value> multiply with volatility baseline EMA to get trigger value (default: 1.6)
srsi_macd
description:
Stochastic MACD Strategy
options:
--period=<value> period length, same as --period_length (default: 30m)
--period_length=<value> period length, same as --period (default: 30m)
--min_periods=<value> min. number of history periods (default: 200)
--rsi_periods=<value> number of RSI periods
--srsi_periods=<value> number of RSI periods (default: 9)
--srsi_k=<value> %D line (default: 5)
--srsi_d=<value> %D line (default: 3)
--oversold_rsi=<value> buy when RSI reaches or drops below this value (default: 20)
--overbought_rsi=<value> sell when RSI reaches or goes above this value (default: 80)
--ema_short_period=<value> number of periods for the shorter EMA (default: 24)
--ema_long_period=<value> number of periods for the longer EMA (default: 200)
--signal_period=<value> number of periods for the signal EMA (default: 9)
--up_trend_threshold=<value> threshold to trigger a buy signal (default: 0)
--down_trend_threshold=<value> threshold to trigger a sold signal (default: 0)
stddev
description:
Buy when standard deviation and mean increase, sell on mean decrease.
options:
--period=<value> period length, set poll trades to 100ms, poll order 1000ms. Same as --period_length (default: 100ms)
--period_length=<value> period length, set poll trades to 100ms, poll order 1000ms. Same as --period (default: 100ms)
--trendtrades_1=<value> Trades for array 1 to be subtracted stddev and mean from (default: 5)
--trendtrades_2=<value> Trades for array 2 to be calculated stddev and mean from (default: 53)
--min_periods=<value> min_periods (default: 1250)
ta_ema
description:
Buy when (EMA - last(EMA) > 0) and sell when (EMA - last(EMA) < 0). Optional buy on low RSI.
options:
--period=<value> period length, same as --period_length (default: 10m)
--period_length=<value> period length, same as --period (default: 10m)
--min_periods=<value> min. number of history periods (default: 52)
--trend_ema=<value> number of periods for trend EMA (default: 20)
--neutral_rate=<value> avoid trades if abs(trend_ema) under this float (0 to disable, "auto" for a variable filter) (default: 0.06)
--oversold_rsi_periods=<value> number of periods for oversold RSI (default: 20)
--oversold_rsi=<value> buy when RSI reaches this value (default: 30)
ta_macd
description:
Buy when (MACD - Signal > 0) and sell when (MACD - Signal < 0).
options:
--period=<value> period length, same as --period_length (default: 1h)
--period_length=<value> period length, same as --period (default: 1h)
--min_periods=<value> min. number of history periods (default: 52)
--ema_short_period=<value> number of periods for the shorter EMA (default: 12)
--ema_long_period=<value> number of periods for the longer EMA (default: 26)
--signal_period=<value> number of periods for the signal EMA (default: 9)
--up_trend_threshold=<value> threshold to trigger a buy signal (default: 0)
--down_trend_threshold=<value> threshold to trigger a sold signal (default: 0)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 70)
ta_macd_ext
description:
Buy when (MACD - Signal > 0) and sell when (MACD - Signal < 0) with controllable talib TA types
options:
--period=<value> period length, same as --period_length (default: 1h)
--min_periods=<value> min. number of history periods (default: 52)
--ema_short_period=<value> number of periods for the shorter EMA (default: 12)
--ema_long_period=<value> number of periods for the longer EMA (default: 26)
--signal_period=<value> number of periods for the signal EMA (default: 9)
--fast_ma_type=<value> fast_ma_type of talib: SMA, EMA, WMA, DEMA, TEMA, TRIMA, KAMA, MAMA, T3 (default: null)
--slow_ma_type=<value> slow_ma_type of talib: SMA, EMA, WMA, DEMA, TEMA, TRIMA, KAMA, MAMA, T3 (default: null)
--signal_ma_type=<value> signal_ma_type of talib: SMA, EMA, WMA, DEMA, TEMA, TRIMA, KAMA, MAMA, T3 (default: null)
--default_ma_type=<value> set default ma_type for fast, slow and signal. You are able to overwrite single types separately (fast_ma_type, slow_ma_type, signal_ma_type) (default: SMA)
--up_trend_threshold=<value> threshold to trigger a buy signal (default: 0)
--down_trend_threshold=<value> threshold to trigger a sold signal (default: 0)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 70)
ta_trix
description:
TRIX - 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA with rsi oversold
options:
--period=<value> period length eg 10m (default: 5m)
--timeperiod=<value> timeperiod for TRIX (default: 30)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 70)
trend_ema (default)
description:
Buy when (EMA - last(EMA) > 0) and sell when (EMA - last(EMA) < 0). Optional buy on low RSI.
options:
--period=<value> period length, same as --period_length (default: 2m)
--period_length=<value> period length, same as --period (default: 2m)
--min_periods=<value> min. number of history periods (default: 52)
--trend_ema=<value> number of periods for trend EMA (default: 26)
--neutral_rate=<value> avoid trades if abs(trend_ema) under this float (0 to disable, "auto" for a variable filter) (default: auto)
--oversold_rsi_periods=<value> number of periods for oversold RSI (default: 14)
--oversold_rsi=<value> buy when RSI reaches this value (default: 10)
ta_ppo
description:
PPO - Percentage Price Oscillator with rsi oversold
options:
--period=<value> period length, same as --period_length (default: 10m)
--ema_short_period=<value> number of periods for the shorter EMA (default: 12)
--ema_long_period=<value> number of periods for the longer EMA (default: 26)
--signal_period=<value> number of periods for the signal EMA (default: 9)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--ma_type==<value> moving average type of talib: SMA, EMA, WMA, DEMA, TEMA, TRIMA, KAMA, MAMA, T3 (default: SMA)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 70)
ta_ultosc
description:
ULTOSC - Ultimate Oscillator with rsi oversold
options:
--period=<value> period length eg 5m (default: 5m)
--min_periods=<value> min. number of history periods (default: 52)
--signal=<value> Provide signal and indicator "simple" (buy@65, sell@50), "low" (buy@65, sell@30), "trend" (buy@30, sell@70) (default: simple)
--timeperiod1=<value> talib ULTOSC timeperiod1 (default: 7)
--timeperiod2=<value> talib ULTOSC timeperiod2 (default: 14)
--timeperiod3=<value> talib ULTOSC timeperiod3 (default: 28)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 90)
ti_hma
description:
HMA - Hull Moving Average
options:
--period=<value> period length eg 10m (default: 15m)
--min_periods=<value> min. number of history periods (default: 52)
--trend_hma=<value> number of periods for trend hma (default: 36)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 25)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 70)
trendline
description:
Calculate a trendline and trade when trend is positive vs negative.
options:
--period=<value> period length (default: 30s)
--period_length=<value> period length (default: 30s)
--lastpoints=<value> Number of trades for short trend average (default: 100)
--avgpoints=<value> Number of trades for long trend average (default: 1000)
--lastpoints2=<value> Number of trades for short trend average (default: 10)
--avgpoints2=<value> Number of trades for long trend average (default: 100)
--min_periods=<value> Basically avgpoints + a BUNCH of more preroll periods for anything less than 5s period (default: 15000)
--markup_sell_pct=<value> test (default: 0)
--markdown_buy_pct=<value> test (default: 0)
trust_distrust
description:
Sell when price higher than $sell_min% and highest point - $sell_threshold% is reached. Buy when lowest price point + $buy_threshold% reached.
options:
--period=<value> period length, same as --period_length (default: 30m)
--period_length=<value> period length, same as --period (default: 30m)
--min_periods=<value> min. number of history periods (default: 52)
--sell_threshold=<value> sell when the top drops at least below this percentage (default: 2)
--sell_threshold_max=<value> sell when the top drops lower than this max, regardless of sell_min (panic sell, 0 to disable) (default: 0)
--sell_min=<value> do not act on anything unless the price is this percentage above the original price (default: 1)
--buy_threshold=<value> buy when the bottom increased at least above this percentage (default: 2)
--buy_threshold_max=<value> wait for multiple buy signals before buying (kill whipsaw, 0 to disable) (default: 0)
--greed=<value> sell if we reach this much profit (0 to be greedy and either win or lose) (default: 0)
wavetrend
description:
Buy when (Signal < Oversold) and sell when (Signal > Overbought).
options:
--period=<value> period length, same as --period_length (default: 1h)
--period_length=<value> period length, same as --period (default: 1h)
--min_periods=<value> min. number of history periods (default: 21)
--wavetrend_channel_length=<value> wavetrend channel length (default: 10)
--wavetrend_average_length=<value> wavetrend average length (default: 21)
--wavetrend_overbought_1=<value> wavetrend overbought limit 1 (default: 60)
--wavetrend_overbought_2=<value> wavetrend overbought limit 2 (default: 53)
--wavetrend_oversold_1=<value> wavetrend oversold limit 1 (default: -60)
--wavetrend_oversold_2=<value> wavetrend oversold limit 2 (default: -53)
--wavetrend_trends=<value> act on trends instead of limits (default: false)
--overbought_rsi_periods=<value> number of periods for overbought RSI (default: 9)
--overbought_rsi=<value> sold when RSI exceeds this value (default: 80)
While the trade
command is running, Zenbot will respond to these keypress commands:
- Pressing
b
will trigger a buy,s
for sell, andB
andS
for market (taker) orders. - Pressing
c
orC
will cancel any active orders. - Pressing
m
orM
will toggle manual mode (--manual
)
These commands can be used to override what the bot is doing. Or, while running with the --manual
flag, this allows you to make all the trade decisions yourself.
If you want to use the bot without it trading for you, but just use it for the balance overview and manual trades, you can start the bot with --strategy noop
, the bot will not trade automatically.
To run trade
or sim
commands with a pre-defined set of options, use:
zenbot trade --conf <path>
Where <path>
points to a JS file that exports an object hash that overrides any conf or argument variables. For example, this file will run gdax.ETH-USD with options specific for that market:
var c = module.exports = {}
// ETH settings (note: this is just an example, not necessarily recommended)
c.selector = 'gdax.ETH-USD'
c.period = '10m'
c.trend_ema = 20
c.neutral_rate = 0.1
c.oversold_rsi_periods = 20
c.max_slippage_pct = 10
c.order_adjust_time = 10000
A basic web UI is available at the url stated during startup. This port can be configured in the conf.js or randomly assigned. In it's infancy, there are a few caveats with the current UI.
- In order to have statistics displayed, they must first be dumped from the CLI. Pressing
D
will refresh the statistics on each refresh of the dashboard. - Currently the data is mostly static with the exception of the tradingview charts.
- Currently only READ-ONLY
From left to right:
- Timestamp in local time (grey, blue when showing "live" stats)
- Asset price in currency (yellow)
- Percent change of price since last period (red/green)
- Volume in asset since last period (grey)
- RSI ANSI graph (red/green)
trend_ema_rate
(red/green, explained below)- Current signal or action, including
buy
,sell
,buying
,selling
,bought
,sold
andlast_trade_worth
(percent change in the trend direction since last buy/sell) - Account balance (asset)
- Account balance (currency)
- Profit or loss percent (can be reset with
--reset_profit
) - Gain or loss vs. buy/hold strategy
- The default strategy is called
trend_ema
and resides at./extensions/strategies/trend_ema
. - Defaults to using a 2m period, but you can override this with adding e.g.
--period=5m
to thesim
ortrade
commands. - Computes the 26-period EMA of the current price, and calculates the percent change from the last period's EMA to get the
trend_ema_rate
- Considers
trend_ema_rate >= 0
an upwards trend andtrend_ema_rate < 0
a downwards trend - Filters out low values (whipsaws) by
neutral_rate
, which when set toauto
, uses the standard deviation of thetrend_ema_rate
as a variable noise filter. - Buys at the beginning of upwards trend, sells at the beginning of downwards trend
- If
oversold_rsi
is set, tries to buy when the RSI dips below that value, and then starts to recover (a counterpart to--profit_stop_enable_pct
, which sells when a percent of profit is reached, and then dips) - The bot will always try to avoid trade fees, by using post-only orders and thus being a market "maker" instead of a "taker". Some exchanges will, however, not offer maker discounts.
The moving average convergence divergence calculation is a lagging indicator, used to follow trends.
- Can be very effective for trading periods of 1h, with a shorter period like 15m it seems too erratic and the Moving Averages are kind of lost.
- It's not firing multiple 'buy' or 'sold' signals, only one per trend, which seems to lead to a better quality trading scheme.
- Especially when the bot will enter in the middle of a trend, it avoids buying unless it's the beginning of the trend.
Attempts to buy low and sell high by tracking RSI high-water readings.
- Effective in sideways markets or markets that tend to recover after price drops.
- Risky to use in bear markets, since the algorithm depends on price recovery.
- If the other strategies are losing you money, this strategy may perform better, since it basically "reverses the signals" and anticipates a reversal instead of expecting the trend to continue.
Uses a Parabolic SAR indicator to trade when SAR trend reverses.
- Tends to generate earlier signals than EMA-based strategies, resulting in better capture of highs and lows, and better protection against quick price drops.
- Does not perform well in sideways (non-trending) markets, generating more whipsaws than EMA-based strategies.
- Most effective with short period (default is 2m), which means it generates 50-100 trades/day, so only usable on GDAX (with 0% maker fee) at the moment.
- Tested live, results here
Trade when % change from last two 1m periods is higher than average.
This strategy is experimental and has WILDLY varying sim results. NOT RECOMMENDED YET.
- Like the sar strategy, this generates early signals and can be effective in volatile markets and for sudden price drop protection.
- Its weakness is that it performs very poorly in low-volatility situations and misses signals from gradually developing trends.
- Trade frequency is adjusted with a combination of
--period
and--trend_ema
. For example, if you want more frequent trading, try--period=5m
or--trend_ema=15
or both. If you get too many ping-pong trades or losses from fees, try increasingperiod
ortrend_ema
or increasingneutral_rate
. - Sometimes it's tempting to tell the bot trade very often. Try to resist this urge, and go for quality over quantity, since each trade comes with a decent amount of slippage and whipsaw risk.
--oversold_rsi=<rsi>
will try to buy when the price dives. This is one of the ways to get profit above buy/hold, but setting it too high might result in a loss if the price continues to fall.- In a market with predictable price surges and corrections,
--profit_stop_enable_pct=10
will try to sell when the last buy hits 10% profit and then drops to 9% (the drop % is set with--profit_stop_pct
). However in strong, long uptrends this option may end up causing a sell too early. - For Kraken and GDAX you may wish to use
--order_type="taker"
, this uses market orders instead of limit orders. You usually pay a higher fee, but you can be sure that your order is filled instantly. This means that the sim will more closely match your live trading. Please note that GDAX does not charge maker fees (limit orders), so you will need to choose between not paying fees and running the risk orders do not get filled on time, or paying somewhat high % of fees and making sure your orders are always filled on time.
Zenbot employs various notifiers to keep you up to date on the bot's actions. We currently send a notification on a buy and on a sell signal.
Supply zenbot with your api key and device ID and we will send your notifications to your device. https://www.pushbullet.com/
Supply zenbot with a webhook URI and zenbot will push notifications to your webhook. https://slack.com/
Supply zenbot with your XMPP credentials and zenbot will send notifications by connecting to your XMPP, sending the notification, and disconnecting. https://xmpp.org/
Supply zenbot with your IFTTT maker key and zenbot will push notifications to your IFTTT. https://ifttt.com/maker_webhooks
Supply zenbot with your Discord webhook id and webhook token zenbot will push notifications to your Discord channel.
How to add a webhook to a Discord channel https://support.discordapp.com/hc/en-us/articles/228383668
Supply zenbot with your Prowl API key and zenbot will push notifications to your Prowl enabled devices. https://www.prowlapp.com/
Supply zenbot with your TextBelt API key and zenbot will send SMS notifications to your cell phone. https://www.textbelt.com/
Supply zenbot with your Telegram bot token and chat id zenbot will push notifications to your Telegram chat. https://telegram.org/
Supply Zenbot with recipients' ADM addresses, sender's account passPhrase and node list and Zenbot will push notifications to ADAMANT chats. https://adamant.im/
You can enable a Rest API for Zenbot by enabling the following configuration
c.output.api = {}
c.output.api.on = true
c.output.api.port = 0 // 0 = random port
You can choose a port, or pick 0 for a random port.
Once you did that, you can call the API on: http://<hostname>:<port>/trades
Zenbot's order execution engine can also be used for manual trades. Benefits include:
- Avoids market-order fees by using a short-term limit order
- Can automatically determine order size from account balance
- Adjusts order every 30s (if needed) to ensure quick execution
- If an order is partially filled, attempts to re-order with remaining size
The command to buy is:
zenbot buy <selector> [--size=<size>] [--pct=<pct>]
For example, to use your remaining USD balance in GDAX to buy Bitcoin:
zenbot buy gdax.BTC-USD
Or to sell 10% of your BTC,
zenbot sell gdax.BTC-USD --pct=10