In this section we'll deploy tf-serving model to kubernetes. In order to do that we'll create a separate folder kube-config
and implement the following steps:
- Create deployment for the tf-serving model
model-deployment.yaml
:-
apiVersion: apps/v1 kind: Deployment metadata: name: tf-serving-clothing-model spec: replicas: 1 selector: matchLabels: app: tf-serving-clothing-model template: metadata: labels: app: tf-serving-clothing-model spec: containers: - name: tf-serving-clothing-model image: clothing-model:xception-v4-001 resources: limits: memory: "512Mi" cpu: "0.5" ports: - containerPort: 8500
- Load the model image to kind:
kind load docker-image clothing-model:xception-v4-001
- Create model deployment:
kubectl apply -f model-deployment.yaml
- Get the running pod id for the model:
kubectl get pod
- Test the model deployment using the pod id:
kubectl port-forword tf-serving-clothing-model-85cd6dsb6-rfvg410m 8500:8500
and rungateway.py
script to get the predictions.
-
- Create service of tf-serving model
model-service.yaml
:-
apiVersion: v1 kind: Service metadata: name: tf-serving-clothing-model spec: type: ClusterIP # default service type is always ClusterIP (i.e., internal service) selector: app: tf-serving-clothing-model ports: - port: 8500 targetPort: 8500
- Create model service:
kubectl apply -f mdoel-service.yaml
- Check the model service:
kubectl get service
. - Test the model service:
kubectl port-forward service/tf-serving-clothing-model 8500:8500
and rungateway.py
for predictions.
-
- Create deployment for the gateway
gateway-deployment.yaml
:-
apiVersion: apps/v1 kind: Deployment metadata: name: gateway spec: selector: matchLabels: app: gateway template: metadata: labels: app: gateway spec: containers: - name: gateway image: clothing-model-gateway:002 resources: limits: memory: "128Mi" cpu: "100m" ports: - containerPort: 9696 env: # set the enivornment variable for model - name: TF_SERVING_HOST value: tf-serving-clothing-model.default.svc.cluster.local:8500 # kubernates naming convention
- Load the gateway image to kind:
kind load docker-image clothing-model-gateway:002
- Create gateway deployment
kubectl apply -f gateway-deployment.yaml
and get the running pod idkubectl get pod
- Test the gateway pod:
kubectl port-forward gateway-6b945f541-9gptfd 9696:9696
and executetest.py
for get predictions.
-
- Create service of tf-serving model
gateway-service.yaml
:-
apiVersion: v1 kind: Service metadata: name: gateway spec: type: LoadBalancer # External service to communicate with client (i.e., LoadBalancer) selector: app: gateway ports: - port: 80 # port of the service targetPort: 9696 # port of load balancer
- Create gateway service:
kubectl apply -f gateway-service.yaml
- Get service id:
kubectl get service
- Test the gateway service:
kubectl port-forward service/gateway 8080:80
and replace the url ontest.py
to 8080 to get predictions.
-
Links
- Article to come over load balancing problem in production: https://kubernetes.io/blog/2018/11/07/grpc-load-balancing-on-kubernetes-without-tears/
Add notes from the video (PRs are welcome)
- tensorflow serving in C++, gateway service as flask app
- gateway service: image preprocessing (i.e. resizing), prepare matrix, numpy arr, convert to protobuf, gRPC to communicate with tensorflow serving; postprocessing
- using telnet to check kubernetes pod
The notes are written by the community. If you see an error here, please create a PR with a fix. |