-
Notifications
You must be signed in to change notification settings - Fork 0
/
0004.py
39 lines (37 loc) · 1.23 KB
/
0004.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Source: https://leetcode.com/problems/median-of-two-sorted-arrays
# Title: Median of Two Sorted Arrays
# Difficulty: Hard
# Author: Mu Yang <http://muyang.pro>
################################################################################################################################
# Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.
#
# The overall run time complexity should be O(log (m+n)).
#
# Example 1:
#
# Input: nums1 = [1,3], nums2 = [2]
# Output: 2.00000
# Explanation: merged array = [1,2,3] and median is 2.
#
# Example 2:
#
# Input: nums1 = [1,2], nums2 = [3,4]
# Output: 2.50000
# Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
#
# Constraints:
#
# nums1.length == m
# nums2.length == n
# 0 <= m <= 1000
# 0 <= n <= 1000
# 1 <= m + n <= 2000
# -10^6 <= nums1[i], nums2[i] <= 10^6
#
################################################################################################################################
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
nums1 += nums2
nums1.sort()
n = len(nums1)
return (nums1[(n-1)//2] + nums1[n//2])/2