-
Notifications
You must be signed in to change notification settings - Fork 0
/
0062.py
56 lines (50 loc) · 1.8 KB
/
0062.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Source: https://leetcode.com/problems/unique-paths
# Title: Unique Paths
# Difficulty: Medium
# Author: Mu Yang <http://muyang.pro>
################################################################################################################################
# There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.
#
# Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
#
# The test cases are generated so that the answer will be less than or equal to 2 * 10^9.
#
# Example 1:
#
# https://assets.leetcode.com/uploads/2018/10/22/robot_maze.png
# Input: m = 3, n = 7
# Output: 28
#
# Example 2:
#
# Input: m = 3, n = 2
# Output: 3
# Explanation:
# From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
# 1. Right -> Down -> Down
# 2. Down -> Down -> Right
# 3. Down -> Right -> Down
#
# Constraints:
#
# 1 <= m, n <= 100
#
################################################################################################################################
# Python 3.8+
from math import comb
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
return comb(m+n-2, m-1)
################################################################################################################################
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
res = 1
if m > n:
m, n = n, m
m -= 1
n -= 1
# C^{m+n}_m
for i in range(m):
res *= n+m-i
res /= (i+1)
return int(res)