-
Notifications
You must be signed in to change notification settings - Fork 0
/
0070.go
48 lines (44 loc) · 1.4 KB
/
0070.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// Source: https://leetcode.com/problems/climbing-stairs
// Title: Climbing Stairs
// Difficulty: Easy
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// You are climbing a staircase. It takes n steps to reach the top.
//
// Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
//
// Example 1:
//
// Input: n = 2
// Output: 2
// Explanation: There are two ways to climb to the top.
// 1. 1 step + 1 step
// 2. 2 steps
//
// Example 2:
//
// Input: n = 3
// Output: 3
// Explanation: There are three ways to climb to the top.
// 1. 1 step + 1 step + 1 step
// 2. 1 step + 2 steps
// 3. 2 steps + 1 step
//
// Constraints:
//
// 1 <= n <= 45
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
import "math"
// Let S(n) be the number of the ways
// S(1) = 1, S(2) = 2
// For step n, we may
// - Do an 1 step, and then have S(n-1) ways to reach the target;
// - Do a two steps, and then have S(n-2) ways to reach the target.
// Therefore, S(n) = S(n-1) + S(n-2), i.e. the (n+1)th Fibonacci number
func climbStairs(n int) int {
invSqrt5 := math.Sqrt(0.2)
res := math.Pow(math.Phi, float64(n+1)) * invSqrt5
return int(math.Round(res))
}