-
Notifications
You must be signed in to change notification settings - Fork 0
/
0279.go
88 lines (74 loc) · 2 KB
/
0279.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// Source: https://leetcode.com/problems/perfect-squares
// Title: Perfect Squares
// Difficulty: Medium
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Given an integer n, return the least number of perfect square numbers that sum to n.
//
// A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.
//
// Example 1:
//
// Input: n = 12
// Output: 3
// Explanation: 12 = 4 + 4 + 4.
//
// Example 2:
//
// Input: n = 13
// Output: 2
// Explanation: 13 = 4 + 9.
//
// Constraints:
//
// 1 <= n <= 10^4
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
import "math"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Use DP
func numSquares(n int) int {
dp := make([]int, n+1)
for i := 1; i <= n; i++ {
dp[i] = math.MaxInt32
for j := 1; j*j <= i; j++ {
dp[i] = _min(dp[i], dp[i-j*j]+1)
}
}
return dp[n]
}
func _min(a, b int) int {
if a < b {
return a
}
return b
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Use Math
// By Lagrange's four-square theorem, the result should be 1, 2, 3, 4.
func numSquares2(n int) int {
// If n is a perfect square, return 1.
if _isSquare(n) {
return 1
}
// The result is 4 if and only if n = 4^a * (8b+7)
// See Legendre's three-square theorem
for n&3 == 0 { // n%4 == 0
n >>= 2 // n /= 4
}
if n&7 == 7 { // n % 8 == 7
return 4
}
// Check if result is 2
for i := 1; i*i <= n; i++ {
if _isSquare(n - i*i) {
return 2
}
}
return 3
}
func _isSquare(n int) bool {
sq := int(math.Sqrt(float64(n)))
return n == sq*sq
}