-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1314.go
109 lines (94 loc) · 2.55 KB
/
1314.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
// Source: https://leetcode.com/problems/matrix-block-sum
// Title: Matrix Block Sum
// Difficulty: Medium
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Given a m x n matrix mat and an integer k, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for:
//
// i - k <= r <= i + k,
// j - k <= c <= j + k, and
// (r, c) is a valid position in the matrix.
//
// Example 1:
//
// Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
// Output: [[12,21,16],[27,45,33],[24,39,28]]
//
// Example 2:
//
// Input: mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
// Output: [[45,45,45],[45,45,45],[45,45,45]]
//
// Constraints:
//
// m == mat.length
// n == mat[i].length
// 1 <= m, n, k <= 100
// 1 <= mat[i][j] <= 100
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Naive
func matrixBlockSum(mat [][]int, k int) [][]int {
m := len(mat)
n := len(mat[0])
ans := make([][]int, m)
for i := 0; i < m; i++ {
ans[i] = make([]int, n)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for r := _max(i-k, 0); r <= _min(i+k, m-1); r++ {
for c := _max(j-k, 0); c <= _min(j+k, n-1); c++ {
ans[i][j] += mat[r][c]
}
}
}
}
return ans
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Prefix sum
func matrixBlockSum2(mat [][]int, k int) [][]int {
m := len(mat)
n := len(mat[0])
// Compute prefix sums
sum := make([][]int, m+1)
for i := 0; i < m+1; i++ {
sum[i] = make([]int, n+1)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
sum[i+1][j+1] = mat[i][j] + sum[i][j+1] + sum[i+1][j] - sum[i][j]
}
}
// Compute block sum
ans := make([][]int, m)
for i := 0; i < m; i++ {
ans[i] = make([]int, n)
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
r1 := _max(0, i-k)
c1 := _max(0, j-k)
r2 := _min(m, i+k+1)
c2 := _min(n, j+k+1)
ans[i][j] = sum[r2][c2] - sum[r2][c1] - sum[r1][c2] + sum[r1][c1]
}
}
return ans
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
func _max(a, b int) int {
if a > b {
return a
}
return b
}
func _min(a, b int) int {
if a < b {
return a
}
return b
}