-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1508.go
106 lines (90 loc) · 2.81 KB
/
1508.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
// Source: https://leetcode.com/problems/range-sum-of-sorted-subarray-sums
// Title: Range Sum of Sorted Subarray Sums
// Difficulty: Medium
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// You are given the array nums consisting of n positive integers. You computed the sum of all non-empty continuous subarrays from the array and then sorted them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.
//
// Return the sum of the numbers from index left to index right (indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 10^9 + 7.
//
// Example 1:
//
// Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
// Output: 13
// Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.
//
// Example 2:
//
// Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
// Output: 6
// Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
//
// Example 3:
//
// Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
// Output: 50
//
// Constraints:
//
// n == nums.length
// 1 <= nums.length <= 1000
// 1 <= nums[i] <= 100
// 1 <= left <= right <= n * (n + 1) / 2
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
import (
"container/heap"
)
type pair struct {
sum int
left int
right int
}
type pairHeap []pair
func (h pairHeap) Len() int { return len(h) }
func (h pairHeap) Less(i, j int) bool { return h[i].sum < h[j].sum } // we want min-heap
func (h pairHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func newPairHeap(arr []pair) *pairHeap {
h := pairHeap(arr)
heap.Init(&h)
return &h
}
func (h *pairHeap) Push(x interface{}) {
*h = append(*h, x.(pair))
}
func (h *pairHeap) Pop() interface{} {
n := len(*h)
x := (*h)[n-1]
*h = (*h)[:n-1]
return x
}
func (h *pairHeap) Peak() *pair {
if h.Len() == 0 {
return nil
}
return &(*h)[0]
}
const modulo = int(1e9 + 7)
func rangeSum(nums []int, n int, left int, right int) int {
sumPairs := make([]pair, n)
for idx, num := range nums {
sumPairs[idx] = pair{sum: num, right: idx}
}
sumHeap := newPairHeap(sumPairs)
left--
res := 0
for i := 0; i < right; i++ {
item := heap.Pop(sumHeap).(pair)
if i >= left {
res += item.sum
res %= modulo
}
item.right++
if item.right < n {
item.sum += nums[item.right]
heap.Push(sumHeap, item)
}
}
return res
}