-
Notifications
You must be signed in to change notification settings - Fork 0
/
1642.go
109 lines (93 loc) · 3.07 KB
/
1642.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
// Source: https://leetcode.com/problems/furthest-building-you-can-reach
// Title: Furthest Building You Can Reach
// Difficulty: Medium
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// You are given an integer array heights representing the heights of buildings, some bricks, and some ladders.
//
// You start your journey from building 0 and move to the next building by possibly using bricks or ladders.
//
// While moving from building i to building i+1 (0-indexed),
//
// If the current building's height is greater than or equal to the next building's height, you do not need a ladder or bricks.
// If the current building's height is less than the next building's height, you can either use one ladder or (h[i+1] - h[i]) bricks.
//
// Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.
//
// Example 1:
//
// https://assets.leetcode.com/uploads/2020/10/27/q4.gif
//
// Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1
// Output: 4
// Explanation:
// Starting at building 0, you can follow these steps:
// Go to building 1 without using ladders nor bricks since 4 >= 2.
// Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7.
// Go to building 3 without using ladders nor bricks since 7 >= 6.
// Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9.
// It is impossible to go beyond building 4 because you do not have any more bricks or ladders.
//
// Example 2:
//
// Input: heights = [4,12,2,7,3,18,20,3,19], bricks = 10, ladders = 2
// Output: 7
//
// Example 3:
//
// Input: heights = [14,3,19,3], bricks = 17, ladders = 0
// Output: 3
//
// Constraints:
//
// 1 <= heights.length <= 10^5
// 1 <= heights[i] <= 10^6
// 0 <= bricks <= 10^9
// 0 <= ladders <= heights.length
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
import (
"container/heap"
)
type intHeap []int
func (h intHeap) Len() int { return len(h) }
func (h intHeap) Less(i, j int) bool { return h[i] > h[j] } // we want max-heap
func (h intHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func newIntHeap(arr []int) *intHeap {
h := intHeap(arr)
heap.Init(&h)
return &h
}
func (h *intHeap) Push(x interface{}) {
*h = append(*h, x.(int))
}
func (h *intHeap) Pop() interface{} {
n := len(*h)
x := (*h)[n-1]
*h = (*h)[:n-1]
return x
}
func furthestBuilding(heights []int, bricks int, ladders int) int {
n := len(heights)
usedBricks := newIntHeap(make([]int, 0, n))
for i := 0; i < n-1; i++ {
diff := heights[i+1] - heights[i]
if diff < 0 { // Just jump
continue
}
heap.Push(usedBricks, diff)
bricks -= diff
if bricks >= 0 { // Use brick
continue
}
if ladders > 0 { // Use ladder
ladders--
bricks += heap.Pop(usedBricks).(int)
}
if bricks < 0 {
return i
}
}
return n - 1
}