-
Notifications
You must be signed in to change notification settings - Fork 19
/
analyse-results.py
executable file
·1003 lines (920 loc) · 36.4 KB
/
analyse-results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import json
import sys
import os
import shutil
import math
import codecs
import requests
from collections import Counter
import math
## this allows to pipe output to a file and have it be utf-8
# adapted from http://stackoverflow.com/questions/4545661/unicodedecodeerror-when-redirecting-to-file
sys.stdout = codecs.getwriter('utf-8')(sys.stdout)
BASEDIR=os.path.dirname( os.path.realpath(__file__) )
PROBE_BLACKLIST_FILE="%s/probe-blacklist.txt" % BASEDIR
### this is a hack
# copy from: /var/www/html/petros/population_coverage/data_sources if needed
EYEBALL_FILE="%s/eyeballs.json" % BASEDIR
# globally available
PROBES = []
with open('probeset.json','r') as probesin:
PROBES = json.load( probesin )
PROBES_BY_ID = {}
for p in PROBES:
PROBES_BY_ID[ p['probe_id'] ] = p
PROBE_BLACKLIST = set()
if os.path.isfile( PROBE_BLACKLIST_FILE ):
with open( PROBE_BLACKLIST_FILE ) as inf:
for line in inf:
line = line.rstrip('\n');
try:
prb_id,rest = line.split(None,1)
prb_id = int(prb_id)
PROBE_BLACKLIST.add( prb_id )
print "PROBE %s blacklisted" % prb_id
except:
print "can't parse this line in %s: %s" % ( PROBE_BLACKLIST_FILE, line )
sys.exit(1)
## filter probe list through blacklist
def data_line_generator():
infilename = 'measurementset.json'
proto = None
with open(infilename,'r') as infile:
msms = json.load( infile , encoding='utf-8')
for meas_proto in msms:
proto = meas_proto
for msm_entry in msms[meas_proto]:
if 'msm_id' in msm_entry:
with open('./results/msm.%s.json' % ( msm_entry['msm_id'] ),'r') as msmfile:
data = json.load( msmfile )
for entry in data:
if 'src_prb_id' in entry and entry['src_prb_id'] in PROBE_BLACKLIST:
continue
elif 'dst_prb_id' in entry and entry['dst_prb_id'] in PROBE_BLACKLIST:
continue
else:
yield proto, entry
else:
print >>sys.stderr," error on msm entry: %s " % ( msm_entry )
### common . For stuff general enough to apply to multiple analyses.
### example is text representation for traces, indexed by srcprb.dstprb
def init_common( basedata, probes ):
return {'v4': {}, 'v6': {}, 'timestamps': set() }
def do_common_entry( data, proto, data_entry ):
detail_key = '.'.join(map(str,[ data_entry['src_prb_id'] , data_entry['dst_prb_id'] ]))
if not detail_key in data[proto]:
data[proto][detail_key] = []
data[proto][detail_key].append( data_entry )
## support timestamps
data['timestamps'].add(data_entry['ts'])
def do_common_printresult( data ):
COMMONPATH='./analysis/common/details'
for proto in ('v4','v6'):
cpp = "%s/%s" % (COMMONPATH,proto)
for detail_key in data[ proto ].keys():
data_sorted = sorted( data[proto][detail_key], key=lambda x:x['ts'])
data_latest = data_sorted[-1]
src_prb,dst_prb = detail_key.split('.')
ldir = "%s/%s/%s/%s" % ( COMMONPATH, proto, src_prb, dst_prb )
if not os.path.exists( ldir ):
os.makedirs( ldir )
latest_file = "%s/latest.json" % (ldir)
# see ixpcountry template for example of how to use these latest.json files
with open(latest_file, 'w') as outfile:
json.dump( data_latest, outfile )
## CommonInit
CommonFormat = {}
## Timestamp period (Alex ixp tools codespring)
# Inits
ts_Start = sys.maxint
ts_End = -sys.maxint
from datetime import datetime
for time in data['timestamps']:
if time < ts_Start:
ts_Start = time
if time > ts_End:
ts_End = time
CommonFormat["StartTime"] = ts_Start
CommonFormat["EndTime"] = ts_End
CommonFormat["StartUTC"] = str(datetime.utcfromtimestamp(ts_Start))
CommonFormat["EndUTC"] = str(datetime.utcfromtimestamp(ts_End))
print "\nTimestamp period: %d - %d "%(CommonFormat["StartTime"],CommonFormat["EndTime"])
print "UTC time period : %s - %s "%(CommonFormat["StartUTC"],CommonFormat["EndUTC"])
## Unique AS list calculation (Alex ixp tools codespring)
ASV4 = set()
ASV6 = set()
for p in PROBES:
if p['asn_v4'] is not None:
ASV4.add(p['asn_v4'])
if p['asn_v6'] is not None:
ASV6.add(p['asn_v6'])
CommonFormat["ASV4"] = list(ASV4)
CommonFormat["ASV6"] = list(ASV6)
## Printing to file
with open(COMMONPATH+'/MsmDescr.json','w') as outfile:
json.dump( CommonFormat, outfile, indent=2 )
print "CommonInfo at: '%s'" % (COMMONPATH+'MsmDescr.json')
### perasn
def init_perasn( basedata, probes ):
d = {'asns': {}}
return d
def do_perasn_entry( asns_d , proto, data ):
terminal_asns = set()
try:
src_asn = PROBES_BY_ID[ data['src_prb_id'] ]['asn_%s' % proto ]
if src_asn != None:
terminal_asns.add( src_asn )
dst_asn = PROBES_BY_ID[ data['dst_prb_id'] ]['asn_%s' % proto ]
if dst_asn != None:
terminal_asns.add( dst_asn )
except:
# remove for now
pass
if len(terminal_asns) != 2:
return
for asn in terminal_asns:
other_asn = filter(lambda x: x != asn, terminal_asns)[0]
asns_d['asns'].setdefault( asn, {'facets': {
'out_of_country': {'asns': {}, 'path_count': 0},
'intermediates': {'asns': {}, 'path_count': 0}
} } )
## process the facet: 'out_of_country'
if data['in_country'] == False:
asns_d['asns'][ asn ]['facets']['out_of_country']['asns'].setdefault( other_asn, [] )
asns_d['asns'][ asn ]['facets']['out_of_country']['asns'][ other_asn ].append(
{
'src_prb_id': data['src_prb_id'],
'dst_prb_id': data['dst_prb_id'],
'proto': proto
}
)
asns_d['asns'][ asn ]['facets']['out_of_country']['path_count'] += 1
## process next facet. did we detect extra ASNs between src and dst
src_dst_with_intermediates = set() #need this because of duplicates
for intermediate in data['as_links']['nodes']:
if intermediate in terminal_asns:
continue
if intermediate.startswith('_'): # it's an IXP
continue
src_dst_with_intermediates.add( ( data['src_prb_id'], data['dst_prb_id'] ) )
for sdwi in src_dst_with_intermediates:
asns_d['asns'][ asn ]['facets']['intermediates']['asns'].setdefault( other_asn, [] )
asns_d['asns'][ asn ]['facets']['intermediates']['asns'][ other_asn ].append(
{
'src_prb_id': sdwi[0],
'dst_prb_id': sdwi[1],
'proto': proto
}
)
asns_d['asns'][ asn ]['facets']['intermediates']['path_count'] += 1
## process next facet, symmetry?
## hmmm. would need a lot of caching and put it in printresult?
## just show the probes then
def do_perasn_printresult( asns_d ):
DATAPATH='./analysis/perasn/'
if not os.path.exists( DATAPATH ):
os.makedirs( DATAPATH )
for asn,asn_data in asns_d['asns'].iteritems():
asn_file = "%s/%s.json" % ( DATAPATH, asn)
# see ixpcountry template for example of how to use these latest.json files
with open(asn_file, 'w') as outfile:
json.dump( asn_data, outfile, indent=2 )
### ixpcount
def init_ixpcount( basedata, probes ):
ixps = {
'ixps_per_path': {},
'seen': {'_none': 0, '_total': 0},
'seen_v4': {'_none': 0, '_total': 0},
'seen_v6': {'_none': 0, '_total': 0}
}
return ixps
def do_ixpcount_entry( ixps, proto, data ):
# proto_key (either 'seen_v4' or 'seen_v6')
pkey = 'seen_%s' % ( proto )
if not 'ixps' in data:
print "no ixp?!"
return
if not len(data['ixps']) in ixps['ixps_per_path']:
ixps['ixps_per_path'][ len( data['ixps'] )] = 0
ixps['ixps_per_path'][ len( data['ixps'] )] += 1
ixps['seen']['_total'] += 1
ixps[pkey]['_total'] += 1
if len(data['ixps']) == 0:
ixps['seen']['_none'] += 1
ixps[pkey]['_none'] += 1
else:
for ixp in data['ixps']:
if ixp not in ixps['seen']:
ixps['seen'][ixp] = 0
ixps['seen'][ixp] += 1
if ixp not in ixps[pkey]:
ixps[pkey][ixp] = 0
ixps[pkey][ixp] += 1
def do_ixpcount_printresult( ixps ):
print "Results for: IXPcount analysis"
print "=============================="
#print "%s" % ( ixps )
key2desc = [
['seen', "Overall"],
['seen_v4', "IPv4"],
['seen_v6', "IPv6"]
]
for kv in key2desc:
(key,desc) = kv
txt = "Results %s" % ( desc )
print txt
print '=' * len(txt)
for ixp in sorted( ixps[ key ], key=lambda x: ixps[ key ][x] , reverse=True ):
pct = 0
try:
pct = 100.0*ixps[key][ixp]/ixps[key]['_total']
except: pass
print "%02d\t%.1f%%\t%s" % ( ixps[key][ixp] , pct, ixp )
### incountry
def init_incountry( basedata, probes ):
data = {
'countries': basedata['countries'],
'routed_asns': 0,
'probes': PROBES,
}
for cc in basedata['country-stats']:
if 'routed_asns' in basedata['country-stats'][ cc ]:
if basedata['country-stats'][ cc ]['routed_asns'] != None:
data['routed_asns'] += basedata['country-stats'][ cc ]['routed_asns']
for proto in ('v4','v6'):
data[ proto ] = {
'path_count': 0,
'incountry_count': 0,
'abroad': {},
'ooc_probes': Counter() #tracks the probes that cause out of country paths (both src and dst)
}
return data
def do_incountry_entry( data, proto, entry ):
data[ proto ]['path_count'] += 1
if entry['in_country'] == True:
data[ proto ]['incountry_count'] += 1
elif entry['in_country'] == False:
data[ proto ]['ooc_probes'][ entry['src_prb_id'] ] += 1
data[ proto ]['ooc_probes'][ entry['dst_prb_id'] ] += 1
country_set = set()
for loc in entry['locations']:
country = None
try:
country = loc.split(',')[-1]
country_set.add( country )
except: pass
for country in country_set:
#TODO exclude guest country
if not country in data['countries']:
if not country in data[ proto ]['abroad']:
data[ proto ]['abroad'][ country ] = 0
data[ proto ]['abroad'][ country ] += 1
def do_incountry_printresult( data ):
DATAPATH='./analysis/incountry/'
if not os.path.exists( DATAPATH ):
os.makedirs( DATAPATH )
# ooc = out of country
ooc_pct = {'v4': None, 'v6': None}
ooc_pct_per_ooc = {'v4': Counter(), 'v6': Counter()}
print "Paths with out-of-country IP addresses"
print "========================================="
for proto in ('v4','v6'):
if data[ proto ]['path_count'] > 0:
ooc_pct[ proto ] = 100 - data[ proto ]['incountry_count'] * 100.0 / data[ proto ]['path_count']
print "IP%s : %.2f%%" % ( proto , ooc_pct[ proto ] )
for country in sorted( data[ proto ]['abroad'], key=lambda x:data[proto]['abroad'][x], reverse=True):
cnt = data[ proto ]['abroad'][ country ]
pct = cnt * 100.0 / data[ proto ]['path_count']
ooc_pct_per_ooc[ proto ][ country ] = pct
print " %s : %.2f%% (%d)" % ( country , pct, cnt)
## probes contributing most to out of country:
print "TOP 10 probes contributing to out-of-country-paths"
for prb_id,count in data[ proto ]['ooc_probes'].most_common(10):
involvepct = 100.0 * count / math.sqrt( data[ proto ]['path_count'] ) # roughly correct
print " prb_id:%s / AS%s / %d/%d paths / involvepct:%.1f" % ( prb_id, PROBES_BY_ID[prb_id]['asn_%s' % proto] , count, data[proto]['path_count'], involvepct )
print "Country stats based on this"
print "---------------------------"
probe_asns = {'v4': set(), 'v6': set()}
for prb_info in data['probes']:
if 'asn_v4' in prb_info and prb_info['asn_v4'] != None:
probe_asns['v4'].add( prb_info['asn_v4'] )
if 'asn_v6' in prb_info and prb_info['asn_v6'] != None:
probe_asns['v6'].add( prb_info['asn_v6'] )
print " ASNs in routing: %s" % ( data['routed_asns'] )
probe_asn_counts = {'v4': None, 'v6': None}
for proto in ('v4','v6'):
cnt = len(probe_asns[ proto ])
print " ASNs with public probes: %s (%s)" % ( cnt, proto )
probe_asn_counts[ proto ] = cnt
inc_data = {
'routed_asn_count': data['routed_asns'],
'probe_asn_count': probe_asn_counts,
'out_of_country_pct': ooc_pct,
'out_of_country_country_pct': {
'v4': ooc_pct_per_ooc['v4'].most_common(),
'v6': ooc_pct_per_ooc['v6'].most_common()
}
}
inc_json_file = "%s/incountry.json" % ( DATAPATH )
with open( inc_json_file,'w') as outf:
json.dump( inc_data, outf )
print "INCOUNTRY data file at: '%s'" % (inc_json_file)
### ixpcountry
def init_ixpcountry( basedata, probes ):
rows = { 'v4' : list(), 'v6' : list() }
_6to4 = []
for probe in PROBES:
if(probe['asn_v6'] == None and 'address_v6' in probe.keys() and probe['address_v6'] != None):
if(probe['address_v6'][:4] == '2002'):
_6to4.append(probe['probe_id'])
if('address_v4' in probe and probe['address_v4'] != None):
rows['v4'].append({
'id': probe['probe_id'],
'asn_v4': probe['asn_v4'],
'asn_v6': probe['asn_v6']
})
if('address_v6' in probe and probe['address_v6'] != None):
rows['v6'].append({
'id': probe['probe_id'],
'asn_v4': probe['asn_v4'],
'asn_v6': probe['asn_v6']
})
## can do data reduction step here if data is too big
d = {'summary':{},'details':{}}
for proto in ('v4','v6'):
d['summary'][proto] = {
'rows': rows[proto],
'cols': rows[proto],
'cells': [],
'_6to4': _6to4,
}
d['details'][proto] = {}
return d
def do_ixpcountry_entry( ixpcountry, proto, data ):
my_cells = ixpcountry['summary'][proto]['cells']
my_cells.append({
'row': data['src_prb_id'],
'col': data['dst_prb_id'],
'data': {'in_country': data['in_country'], 'via_ixp': data['via_ixp']}
})
details = ixpcountry['details'][proto]
detail_key = '.'.join(map(str,[ data['src_prb_id'] , data['dst_prb_id'] ]))
details[ detail_key ] = data
def do_ixpcountry_printresult( ixpcountry ):
VIZPATH='./analysis/ixpcountry/'
VIZDETAILSPATH='./analysis/ixpcountry/details'
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
if not os.path.exists( VIZDETAILSPATH ):
os.makedirs( VIZDETAILSPATH )
for proto in ('v4','v6'):
with open('%s/ixpcountry.%s.json' % (VIZPATH,proto), 'w') as outfile:
json.dump( ixpcountry['summary'][ proto ], outfile )
for detail_key in ixpcountry['details'][ proto ].keys():
with open('%s/%s.%s.json' % ( VIZDETAILSPATH, detail_key, proto ), 'w') as outfile:
json.dump( ixpcountry['details'][ proto ][ detail_key ], outfile )
print "IXPCOUNTRY viz results available in %s" % ( VIZPATH )
### rttmesh
def init_rttmesh( basedata, probes ):
rows = { 'v4' : list(), 'v6' : list(), }
_6to4 = []
for probe in PROBES:
if(probe['asn_v6'] == None and 'address_v6' in probe.keys() and probe['address_v6'] != None):
if(probe['address_v6'][:4] == '2002'):
_6to4.append(probe['probe_id'])
if('address_v4' in probe and probe['address_v4'] != None and "system-ipv4-works" in probe['tags']):
rows['v4'].append({
'id': probe['probe_id'],
'asn_v4': probe['asn_v4'],
'asn_v6': probe['asn_v6']
})
if('address_v6' in probe and probe['address_v6'] != None and "system-ipv6-works" in probe['tags']):
rows['v6'].append({
'id': probe['probe_id'],
'asn_v4': probe['asn_v4'],
'asn_v6': probe['asn_v6']
})
## can do data reduction step here if data is too big
d = {'summary':{},'details':{},'rttseries':{ 'v4':[], 'v6': [] } }
for proto in ('v4','v6'):
d['summary'][proto] = {
'rows': rows[proto],
'cols': rows[proto],
'cells': [],
'_6to4': _6to4,
'pct': {} # holds the percentiles for plotting/axis
}
d['details'][proto] = {}
return d
def do_rttmesh_entry( rttmesh, proto, data ):
my_cells = rttmesh['summary'][proto]['cells']
my_cells.append({
'row': data['src_prb_id'],
'col': data['dst_prb_id'],
'data': {'dst_rtts': data['dst_rtts']}
})
#rttseries for determining coloring of cells later
if len( data['dst_rtts'] ) > 0:
rttmesh['rttseries'][ proto ].append( min( data['dst_rtts'] ) )
details = rttmesh['details'][proto]
detail_key = '.'.join(map(str,[ data['src_prb_id'] , data['dst_prb_id'] ]))
details[ detail_key ] = data
def _percentile(N, percent, key=lambda x:x):
"""
Find the percentile of a list of values.
@parameter N - is a list of values. Note N MUST BE already sorted.
@parameter percent - a float value from 0.0 to 1.0.
@parameter key - optional key function to compute value from each element of N.
@return - the percentile of the values
"""
if not N:
return None
k = (len(N)-1) * percent
f = math.floor(k)
c = math.ceil(k)
if f == c:
return key(N[int(k)])
d0 = key(N[int(f)]) * (c-k)
d1 = key(N[int(c)]) * (k-f)
return d0+d1
def do_rttmesh_printresult( rttmesh ):
VIZPATH='./analysis/rttmesh/'
VIZDETAILSPATH='./analysis/rttmesh/details'
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
if not os.path.exists( VIZDETAILSPATH ):
os.makedirs( VIZDETAILSPATH )
for proto in ('v4','v6'):
# calculate stats for the rttseries
series = sorted( rttmesh['rttseries'][proto] )
p25 = _percentile( series, 0.25 )
p75 = _percentile( series, 0.75 )
print "series (proto:%s): pct25:%s pct75:%s" % (proto, p25, p75 )
rttmesh['summary'][proto]['pct'][25] = p25
rttmesh['summary'][proto]['pct'][75] = p75
with open('%s/rttmesh.%s.json' % (VIZPATH,proto), 'w') as outfile:
json.dump( rttmesh['summary'][ proto ], outfile )
for detail_key in rttmesh['details'][ proto ].keys():
with open('%s/%s.%s.json' % ( VIZDETAILSPATH, detail_key, proto ), 'w') as outfile:
json.dump( rttmesh['details'][ proto ][ detail_key ], outfile )
print "RTTMESH viz results available in %s" % ( VIZPATH )
#### aspath for eyeballs
## fetch live from: http://v6data.data.labs.apnic.net/ipv6-measurement/Economies/NL/NL.asns.json?m=0.01 ??
def init_eyeballasgraph( basedata, probes ):
if len( basedata['countries'] ) != 1:
print >>sys.stderr, "can't do an eyeball graph if countries != 1"
return None
try:
cc = basedata['countries'][0]
pop_url = "http://v6data.data.labs.apnic.net/ipv6-measurement/Economies/%s/%s.asns.json?m=1" % ( cc, cc)
req = requests.get( pop_url )
j = req.json()
eyeball_data = {}
for entry in j:
#key it by the asn. as a string ...
## use a 1% threshold
if entry['percent'] > 1:
eyeball_data[ "AS%s" % entry['as'] ] = entry
except:
print >>sys.stderr, "can't do an eyeball graph without eyeball data in file: '%s'" % EYEBALL_FILE
return None
d = {'nodes': Counter(),
'links': Counter(),
'countries': basedata['countries'][0],
'eyeball_asns': eyeball_data,
'things_between': {}, # stores (src_dstpair) -> set of things inbetween mappings
}
return d
def do_eyeballasgraph_entry( d, proto, entry ):
if d == None:
return
#print "REMOVE ME: %s %s" % ( entry['src_prb_id'], entry['dst_prb_id'] )
try:
src_prb_asn = PROBES_BY_ID[ entry['src_prb_id'] ]['asn_v4']
dst_prb_asn = PROBES_BY_ID[ entry['dst_prb_id'] ]['asn_v4']
except:
print >>sys.stderr, "EEPS, this is weird %s" % ( entry )
src_asn_str = "AS%s" % src_prb_asn # string versions
dst_asn_str = "AS%s" % dst_prb_asn
if src_asn_str in d['eyeball_asns'] and dst_asn_str in d['eyeball_asns']:
## we can also do a version of this where it only counts if you are in both directions in the path
## ie. with the tuple above we find all the things that are on the path
## now cummulate over all the non src
asn_pair = tuple( sorted( [src_asn_str, dst_asn_str ] ) )
d['things_between'].setdefault( asn_pair, set() ) # covers the set of things between src and dst
for n in entry['as_links']['nodes']:
## not src and dst
if n == src_asn_str or n == dst_asn_str:
continue
d['things_between'][ asn_pair ].add( n )
# and also keep track of the graph (like in asgraph)
for n in entry['as_links']['nodes']:
d['nodes'][ n ] += 1
for l in entry['as_links']['links']:
## {u'src': u'NETNOD-MMO-B-1500', u'dst': u'AS29518', u'type': u'd'}
link_key = '>'.join([ l['src'], l['dst'], l['type'] ])
d['links'][ link_key ] += 1
#else:
# print "%s -> %s, not eyeballs?" % ( src_prb_asn , dst_prb_asn )
def do_eyeballasgraph_printresult( d ):
if d is None: return
# loop over all in eyeball_asns
cummulative=0
asn_between = Counter()
does_transit = set()
if d is not None:
for eye_asn,eye_data in d['eyeball_asns'].iteritems():
fract = eye_data['percent']/100 # percent->fraction
cummulative += fract
betweenness = 1-(1-fract)**2
asn_between[ eye_asn ] = betweenness # this can become higher if the eyeb also functions as transit
# we could even separate out the betweenness due to hosting users from btwness due to transit function
## now add a 'blob' for 1-cummaliteve that we couldn't map
asn_between[ '_other' ] = 1-(cummulative)**2
## now iterate over everything that was between a source and a dest
if d and d['things_between'].iteritems():
for pair, btw_set in d['things_between'].iteritems():
(src,dst) = pair
src_frac = d['eyeball_asns'][ src ]['percent']/100
dst_frac = d['eyeball_asns'][ dst ]['percent']/100
weight = src_frac*dst_frac*2 # 2 = both directions
for between in btw_set:
#asn_between.setdefault( between, 0)
asn_between[ between ] += weight
does_transit.add( between )
## now print all the things in ASN_between
## now all nodes should have a betweenness
for asn,weight in asn_between.most_common():
eyeball_fract = 0
if d and asn in d['eyeball_asns']:
eyeball_fract = d['eyeball_asns'][ asn ]['percent']/100
print "%s %s %s" % ( asn,weight,eyeball_fract )
#print json.dumps( d['nodes'] )
#print json.dumps( d['links'] )
result = {'nodes': [], 'edges': []}
VIZPATH='./analysis/eyeballasgraph/'
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
name2idx={}
idx=0
for n in d['nodes']:
name2idx[ n ] = idx
typ = 'transit_asn'
eyeball_pct = 0
conn_btwn_pct = asn_between[ n ]*100;
# figure out if a network 'transits' (an eyeball network can also transit!)
transits = False
if n in does_transit:
transits = True
#
if n in d['eyeball_asns']:
typ = 'eyeball_asn'
eyeball_pct = d['eyeball_asns'][ n ]['percent']
elif n.startswith('_'):
typ = 'ixp'
n = n.lstrip('_');
## todo treat 'others' well
result['nodes'].append({
'id': idx,
'name': n,
'type': typ,
'conn_btwn_pct': conn_btwn_pct,
'transits': transits,
'eyeball_pct': eyeball_pct
})
idx += 1
# add nodes that don't have probes too
for asn in d['eyeball_asns']:
if not asn in d['nodes']:
eyeball_pct = d['eyeball_asns'][ asn ]['percent']
conn_btwn_pct = 1-(1-(eyeball_pct/100))**2
result['nodes'].append({
'id': idx,
'name': asn,
'type': 'eyeball_asn_noprobe',
'conn_btwn_pct': conn_btwn_pct,
'transits': False,
'eyeball_pct': eyeball_pct
})
idx += 1
for l in d['links']:
src,dst,typ = l.split('>',2)
if src in name2idx and dst in name2idx:
result['edges'].append({'source': name2idx[src], 'target': name2idx[dst], 'type': typ})
else:
print >>sys.stderr, "problem with this src/dst: %s/%s" % ( src, dst )
with open('%s/asgraph.json' % ( VIZPATH), 'w') as outfile:
#print >> outfile, "var data=%s ;" % json.dumps( result );
print >> outfile, json.dumps( result, indent=2 );
print "EYEBALLGRAPH viz results in '%s'" % ( VIZPATH )
### aspath
def init_asgraph( basedata, probes ):
d = {'nodes': Counter(),
'links': Counter()
}
return d
def do_asgraph_entry( d, proto, entry ):
# 'meta'-characters:
## '#': probe
## '_': ixp
# make sure source probe is a link in the viz too
#src_prb_meta = '#probe_%s' % entry['src_prb_id']
src_prb_meta = '#%s' % PROBES_BY_ID[ entry['src_prb_id'] ]['description']
src_prb_asn = PROBES_BY_ID[ entry['src_prb_id'] ]['asn_v4']
if src_prb_asn != None:
src_prb_asn = "AS%s" % src_prb_asn
d['nodes'][ src_prb_meta ] += 1
d['nodes'][ src_prb_asn ] += 0
link_key = '>'.join([ src_prb_meta, src_prb_asn, 'prb' ])
d['links'][ link_key ] += 1
# now the AS links
for n in entry['as_links']['nodes']:
d['nodes'][ n ] += 1
for l in entry['as_links']['links']:
## {u'src': u'NETNOD-MMO-B-1500', u'dst': u'AS29518', u'type': u'd'}
link_key = '>'.join([ l['src'], l['dst'], l['type'] ])
d['links'][ link_key ] += 1
def do_asgraph_printresult( d ):
result = {'nodes': [], 'edges': []}
VIZPATH='./analysis/asgraph/'
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
name2idx={}
idx=0
for n in d['nodes']:
count = d['nodes'][n]
name2idx[ n ] = idx
typ = 'asn'
if n.startswith('_'):
typ = 'ixp'
n = n.lstrip('_');
elif n.startswith('#'):
typ = 'prb'
n = n.lstrip('#');
result['nodes'].append({'id': idx, 'name': n, 'type': typ, 'count': count })
idx += 1
for l in d['links']:
src,dst,typ = l.split('>',2)
if src in name2idx and dst in name2idx:
result['edges'].append({'source': name2idx[src], 'target': name2idx[dst], 'type': typ})
else:
print >>sys.stderr, "problem with this src/dst: %s/%s" % ( src, dst )
with open('%s/asgraph.json' % ( VIZPATH), 'w') as outfile:
json.dump( result , outfile )
print "ASGRAPH viz results in '%s'" % ( VIZPATH )
## geopath stuff
def init_geopath( basedata, probes ):
return {'v4':[], 'v6':[]}
def do_geopath_entry( data, proto, data_entry ):
geojson_pieces = data_entry['geojson']
for piece in geojson_pieces:
# {u'type': u'LineString', u'properties': {u'dloc': u'Stockholm,Stockholm,SE', u'is_direct': False, u'dasn': u'', u'sloc': u'Probe', u'sasn': u'59521', u'asn': None}, u'coordinates': [[u'18.0385', u'59.3305'], [u'18.0649', u'59.33258']]}
# leaflet is picky on it's GeoJson?
prop = piece['properties']
del( piece['properties'] )
data[ proto ].append({
'geometry': piece,
'properties': prop,
'type': 'Feature'
})
def do_geopath_printresult( data ):
VIZPATH='./analysis/geopath/'
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
for proto in ('v4','v6'):
geojson = {'type':'FeatureCollection', 'features': data[ proto ] }
with open('%s/geopath.%s.json' % ( VIZPATH, proto ), 'w') as outfile:
json.dump( geojson , outfile )
print "GEOPATH viz results in '%s'" % ( VIZPATH )
### ixplans (ixp-lans, not ix-plans ;) )
def init_ixplans( basedata, probes ):
# group by IP
struct = {}
for proto in ('v4','v6'):
struct[ proto ] = {
'nodes': set(),
'links': set(),
'ixps': Counter()
}
return struct
def do_ixplans_entry( data, proto, data_entry ):
src_prb_id = data_entry['src_prb_id']
dst_prb_id = data_entry['dst_prb_id']
data[ proto ]['nodes'].add( src_prb_id )
data[ proto ]['nodes'].add( dst_prb_id )
if 'ixps' in data_entry:
for ixp in data_entry['ixps']:
link_key = u'{}>{}>{}'.format(src_prb_id, dst_prb_id, ixp)
data[ proto ]['links'].add( link_key )
data[ proto ]['ixps'][ ixp ] += 1
def do_ixplans_printresult( data ):
VIZPATH='./analysis/ixplans/'
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
for proto in ('v4','v6'):
name2idx={}
idx=0
result = {'nodes': [], 'links': [], 'ixps': []}
for n in data[proto]['nodes']:
lat = PROBES_BY_ID[ n ]['lat']
lon = PROBES_BY_ID[ n ]['lon']
asn = PROBES_BY_ID[ n ]['asn_%s' % ( proto ) ]
result['nodes'].append({'probe_id': n, 'asn': asn, 'lat': lat, 'lon': lon})
name2idx[ n ] = idx
idx += 1
for l in data[proto]['links']:
src,dst,ixp = l.split('>',2)
result['links'].append({'source': name2idx[ int(src)], 'target': name2idx[ int(dst)], 'ixp': ixp})
#for i in sorted( data[proto]['ixps'], key=lambda x:data[proto]['ixps'][x], reverse=True ):
for i in sorted( data[proto]['ixps'], reverse=True ):
result['ixps'].append( i )
with open('%s/ixplans.%s.json' % ( VIZPATH, proto ), 'w') as outfile:
json.dump( result , outfile )
print "IXP LANs: viz results in '%s'" % ( VIZPATH )
### probetags
def init_probetags( basedata, probes ):
return {}
def do_probetags_entry( data, proto, data_entry ):
pass
def do_probetags_printresult( data ):
print "PROBETAGS"
VIZPATH="./analysis/probetags/"
if not os.path.exists( VIZPATH ):
os.makedirs( VIZPATH )
tags = {
'system': Counter(),
'user': Counter()
}
json_out = {
'system': [],
'user': [],
}
for p in PROBES:
if 'tags' in p:
for t in p['tags']:
if t.startswith('system-'):
t = t[7:]
tags['system'][ t ] += 1
else:
tags['user'][ t ] += 1
for tagtype in tags:
for tag in sorted( tags[tagtype].keys() ):
json_out[tagtype].append({'text': tag, 'count': tags[tagtype][tag]})
with open("%s/tags.json" % ( VIZPATH ), 'w') as outfile:
json.dump( json_out, outfile )
print "PROBE TAGS: viz results in '%s'" % ( VIZPATH )
### viaanchor
def init_viaanchor( basedata, probes ):
data = {}
for proto in ('v4','v6'):
data[ proto ] = {
'probeset': set(),
'rtts': {}
}
return data
def do_viaanchor_entry( data, proto, data_entry ):
#if data_entry['via_ixp'] == False and len( data_entry['dst_rtts'] ) > 0:
if len( data_entry['dst_rtts'] ) > 0:
key = '|'.join(map(str,[data_entry['src_prb_id'],data_entry['dst_prb_id']]))
if not key in data[ proto ]:
data[proto][ key ]['rtts'] = data_entry['dst_rtts']
else:
# in case of multiple intervals measured
for rtt in data_entry['dst_rtts']:
data[proto][ key ]['rtts'].append( rtt )
def do_viaanchor_printresult( data ):
VIZPATH='./analysis/viaanchor';
MIN_RESPONSE_COUNT=3
## anchors are 6XXX
anchors = set( filter( lambda x:x>=6000 and x<7000, PROBES_BY_ID.keys() ) )
for anchor_id in anchors:
ANCHORPATH= "%s/%s/" % ( VIZPATH, anchor_id )
if not os.path.exists( ANCHORPATH ):
os.makedirs( ANCHORPATH )
for proto in ('v4','v6'):
result = {'cells':[], 'probeset': set()}
for pair,rtts in data[ proto ].iteritems():
if len( rtts ) < MIN_RESPONSE_COUNT: continue
direct_minrtt = min(rtts)
src_prb, dst_prb = pair.split('|')
if anchor_id in (src_prb, dst_prb):
continue
pair1 = "%s|%s" % ( src_prb, anchor_id )
pair2 = "%s|%s" % ( anchor_id, dst_prb )
if not pair1 in data[ proto ]: continue
if not pair2 in data[ proto ]: continue
if len( data[ proto ][ pair1 ] ) < MIN_RESPONSE_COUNT: continue
if len( data[ proto ][ pair2 ] ) < MIN_RESPONSE_COUNT: continue
stitch_minrtt = min( data[ pair1 ] ) + min( data[ pair2 ] )
result['probeset'].add( src_prb )
result['probeset'].add( dst_prb )
result['cells'].append({
'src_prb': src_prb,
'dst_prb': dst_prb,
'direct_minrtt': direct_minrtt,
'stitch_minrtt': stitch_minrtt,
'stitch_rtt_gain': direct_minrtt - stitch_minrtt
})
result['probes'] = []
for prb_id in result['probeset']:
result['probes'].append({
})
with open("%s/stitching.%s.json" % ( ANCHORPATH, proto ) ,'w') as f:
print >>f, json.dumps( result, indent=2 )
print "VIAANCHOR viz results for anchor %s in '%s'" % ( anchor_id, ANCHORPATH )
def init_cities( basedata, probes ):
return {'v4': Counter(), 'v6': Counter()}
def do_cities_entry( data, proto, data_entry ):
for city in data_entry['locations']:
data[proto][city] += 1
def do_cities_printresult( data ):
print "CITIES"
print "======"
for proto in ('v4','v6'):
print "IP%s" % ( proto )
for city,count in data[ proto ].most_common():
print " %s (%s)" % (city, count)
### below might be easy to copy-paste for additional analyses
### stub
def init_stub( basedata, probes ):
return {}
def do_stub_entry( data, proto, data_entry ):
pass
def do_stub_printresult( data ):
pass
## http://stackoverflow.com/a/13814557/1520581
def copytree(src, dst, symlinks=False, ignore=None):
if not os.path.exists(dst):
os.makedirs(dst)
for item in os.listdir(src):
s = os.path.join(src, item)
d = os.path.join(dst, item)
if os.path.isdir(s):
copytree(s, d, symlinks, ignore)
else:
if not os.path.exists(d) or os.stat(src).st_mtime - os.stat(dst).st_mtime > 1:
shutil.copy2(s, d)
def main():
## ixps
### analysis types available
# maybe can make a nice dispatch table out of this
### and/or specify this at command line, ie. ./analyse-results.py <analysis-name> <analysis-name>
# 'ixp_county'
# 'ixpcountry'
basedata = None
with open("basedata.json") as inf:
basedata = json.load( inf )
probes = None
#with open("probeset.json") as inf:
# probes = json.load( inf )
defs={
'ixpcount': True,
'incountry': True,
'ixpcountry': True,
'rttmesh': True,
'cities': True,
'asgraph': True,
'geopath': True,
'ixplans': True,
'probetags': True,
'viaanchor': False, ## buggy
'perasn': True,
'eyeballasgraph': True
}
#defs={'eyeballasgraph': True}
if len( sys.argv ) > 1:
# take defs from stdin arguments
# so you can say: analyse-results.py incountry
defs = {}
for df in sys.argv[1:]:
defs[df]=True
defs['common']=True ## always true
### initialise all analyses
data = {}
### copy template viz stuff
copytree('%s/template/' % BASEDIR ,'./analysis')
## only the analyses that are 'True'
analysis_list = sorted( filter(lambda x: defs[x], defs.keys() ) )
for analysis in analysis_list:
## this is a fancy way of saying:
#data['ixpcount'] = init_ixpcount( basedata, probes )
#data['incountry'] = init_incountryy( basedata, probes )
data[ analysis ] = globals()['init_%s' % analysis]( basedata , PROBES )
### loop over all traceroutes
for proto,data_entry in data_line_generator():
for analysis in analysis_list:
## this calls:
# do_ixpcountry_entry( data['ixpcountry'], proto, data_entry )
globals()["do_%s_entry" % analysis]( data[ analysis ], proto, data_entry )
### print analyses results
for analysis in analysis_list:
globals()["do_%s_printresult" % analysis]( data[analysis] )
if __name__ == '__main__':
#try:
main()
#except UnicodeEncodeError, e:
# print e
# print "If you encounter errors like described here:"
# print " http://stackoverflow.com/questions/4545661/unicodedecodeerror-when-redirecting-to-file"